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ABSTRACT 
 

Evidence suggests that pair programmers – two programmers working 
collaboratively on the same design, algorithm, code, or test – perform 
substantially better than the two would working alone.  Improved quality, 
teamwork, communication, knowledge management, and morale have been 
among the reported benefits of pair programming.  This paper presents a 
comparative economic evaluation that strengthens the case for pair 
programming. The evaluation builds on the quantitative results of an empirical 
study conducted at the University of Utah. The evaluation is performed by 
interpreting these findings in the context of two different, idealized models of 
value realization. In the first model, consistent with the traditional waterfall 
process of software development, code produced by a development team is 
deployed in a single increment; its value is not realized until the full project 
completion. In the second model, consistent with agile software development 
processes such as Extreme Programming, code is produced and delivered in 
small increments; thus its value is realized in an equally incremental fashion. 
Under both models, our analysis demonstrates a distinct economic advantage of 
pair programmers over solo programmers. Based on these preliminary results, 
we recommend that organizations engaged in software development consider 
adopting pair programming as a practice that could improve their bottom line. 
To be able to perform quantitative analyses, several simplifying assumptions 
had to be made regarding alternative models of software development, the costs 
and benefits associated with such models, and how these costs and benefits are 
recognized. The implications of these assumptions are addressed in the paper. 

 



www.manaraa.com

SUBMITTED DRAFT    

INTRODUCTION 
 
Both anecdotal and statistical evidence [10, 24, 32, 34] indicate that pair 
programming, the practice whereby two programmers work side-by-side at one 
computer collaborating on the same design, algorithm, code or test, is highly 
productive.  One of the programmers, the driver, has control of the 
keyboard/mouse and actively implements the design, program, or test.  The 
other programmer, the navigator, continuously observes the work of the driver 
to identify tactical (syntactic, spelling, etc.) defects and also thinks strategically 
about the direction of the work.  On demand, the two programmers brainstorm 
any challenging problem.  Because the two programmers periodically switch 
roles, they work together as equals to develop software.  Many have used the 
pair programming technique for decades, and several publications in the mid-
late 1990s extolled its benefits [11, 12, 24].  More recently, many impressive 
anecdotes among those practicing the Extreme Programming (XP) software 
development methodology [1, 3, 6, 30, 31] greatly aroused awareness of pair 
programming as a technique to improve quality, productivity, knowledge 
management, and employee satisfaction [10, 25, 34].   

In 1999, a formal experiment was run to investigate the effectiveness of the 
pair programming practice. The experiment was run with advanced 
undergraduates at the University of Utah.  Sometimes issues of external validity 
are raised when empirical software engineering studies are conducted with 
students. These issues arise because projects undertaken within a semester in 
artificial settings need not deal with matters of scope and scale that often 
complicate real, industrial projects. However, such settings are still valuable as 
test-beds. They have the potential to provide sufficient realism at low cost while 
allowing for controlled observation of important project parameters [13]. The 
University of Utah empirical study focused on the interactions between and the 
overall effectiveness of two programmers working collaboratively relative to 
programmers working alone. Issues of complexity and scale are not significant 
inhibitors in such a study. 

Software development methodologies, or processes, are prescribed, 
documented collections of software practices (specific methods for software 
design, test, requirements documentation, maintenance, and other activities)  
required to develop or maintain software. Williams developed the Collaborative 
Software ProcessSM (CSPSM) methodology as her dissertation research [35].  
CSP is based on Watts Humphrey’s well known Personal Software ProcessSM 
(PSPSM) [21], but is specifically designed to leverage the power of two 
programmers working together.  The University of Utah experiment assessed the 
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effectiveness of solo programming using the PSP vs. the effectiveness of pair 
programmers using the CSP.  These two processes were specifically chosen to 
best isolate the effects of pair programming; essentially all the other practices 
followed by the programmers were identical.  The experiment yielded 
statistically significant differences between the performance of pair 
programmers and of individual programmers [9, 10, 34, 35].  In this paper, these 
experimental results are used to perform a quantitative analysis of the economic 
feasibility of pair programming.  The findings complement and strengthen the 
qualitative benefits of pair programming that have been reported previously.   

The economic feasibility of pair programming is a key issue. Many 
instinctively reject pair programming because they believe code development 
costs will double: why should two programmers work on each task while a 
single programmer can do the job?  If the practice is not economically feasible, 
managers simply will not permit its use.  Organizations decide whether to adopt 
process improvements based on the bottom-line implications of the outcomes.  
Naturally, the goal of software firms is to be as profitable as possibly while 
providing their customers with the best, high-quality products quickly and 
cheaply.    

The economic feasibility analysis of the pair programming practice centers 
on how it fairs relative to solo programming under a given value realization 
model.  We assume a product realizes value when clients or end users are 
delivered a working product. Even a partial, but working, product can provide 
benefits. We will compare pair programming with solo programming first based 
on simple performance metrics, and then considering these metrics under two 
different value realization models.  In the latter case, the analysis utilizes Net 
Present Value (NPV) [27] as the basis for comparison. This approach per se is 
not novel. Economic models based on NPV have previously been suggested to 
evaluate the return on software quality and infrastructure initiatives; for 
examples, see [7, 14-16, 23]. Our analysis differs in that it relies on a breakeven 
analysis instead of a pure NPV analysis.  

 
ASSUMPTIONS 

 
The economic feasibility of pair programming is assessed by focusing on 

the performance of a single pair of programmers with respect to the performance 
of a solo programmer, under the assumption that both the pair and the solo 
programmer are undertaking the same programming task. Whether the solo or 
pair programmers work in isolation or are part of a larger project team is thus 
immaterial.  
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The assessment makes a number of other simplifying assumptions. Some of 
these assumptions abstract away from extraneous factors over which the 
programmers or developers normally have no control, while others reduce the 
number or limit the behavior of the underlying variables in order to make a 
quantitative comparison possible: 

 
• Cost accumulation. Labor cost is the only kind of cost considered. 

All costs are recognized instantly as they are accrued.  One-time 
overhead costs, such as the pair jelling time [35], are 
disregarded. Since we compare a single programming pair to a 
single programmer working alone, the pattern of expenditures 
for labor costs is linear in each case: costs are accrued 
continuously and at a constant rate. 

• Measures of time and effort. All variables that measure time and 
effort use compressed time. Compressed time excludes idle time, 
interruptions, and time spent on non-development or extra-task 
activities.  

• Defect recovery process. The post-deployment defect discovery 
process is assumed to be perfectly efficient. This implies that 
after a piece of code has been deployed, all defects are found 
instantly.  We assume that post-deployment defects are found by 
the clients of the deployed code, be them end users or a quality 
assurance team. Hence the defect discovery time is not included 
in the development effort. (This is also implied by the 
compressed-time assumption: from the programmers’ 
perspective, the time it takes for post-deployment defects to be 
discovered is idle time, and as such, it is disregarded in the 
analysis.) Defects are fixed at a fixed rate, which depends on the 
development process.  

• Value realization. A linear relationship is assumed between the 
amount of code deployed by the programmers and the value 
generated through the development activity. Deployed code 
instantly realizes value when it is defect-free. Code may be 
deployed in arbitrarily small increments.   

• Ranges and baseline values of model parameters. Whenever 
necessary and reasonable, statistics previously reported in the 
literature are used to determine the ranges and baseline values of 
model parameters.  
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ABSTRACTION OF THE DEVELOPMENT PROCESS  
 
The two development processes that underlie the comparison are the Personal 
Software Process (PSP), which is designed for individual programmers, and the 
Collaborative Software Process (CSP), which is designed for pair programmers. 
The CSP practices are intentionally based on PSP practices, with the exception 
of pair programming.  As a result, we consider that our comparison of PSP and 
CSP is essentially a comparison between solo and pair programming. The shared 
practices of the two processes, therefore, are not discussed here.   
 In what follows, we refer to a single developer or a team of developers 
simultaneously working on a piece of code as a work unit.  We represent the 
development process in terms of two descriptive and three empirical parameters. 
The size of the work unit uniquely differentiates the CSP from the PSP. 

 

DESCRIPTIVE PARAMETERS: 
The two descriptive parameters of the development process are: 

• N: size of the work unit (persons). The number of developers in a work unit. 
N equals 1 for a solo programmer (hereby, a soloist), and 2 for a pair of 
programmers (hereby, a pair).  Thus N = 1 if the work unit consists of a 
soloist following the PSP.  N = 2 if the work unit consists of a pair of 
developers working in tandem on the same task following the CSP.  

• υ: value realization model. The pattern in which a work unit delivers a 
finished or partial product, and accordingly generates value. This parameter 
will be discussed later in the paper. 

The work unit (N) and the value realization model (υ) are the only 
independent parameters in the process model.  When we vary N, we always keep 
the value of υ constant. The values of the empirical parameters all depend on N.  

EMPIRICAL PARAMETERS:  
 
Before we introduce the empirical parameters, we need to define how we 
measure the output (denoted by ω) of a work unit. A work unit, depending on 
how efficient it is, is able to produce only a certain amount of output within a 
given time. Conversely, a work unit, again depending on its efficiency, requires 
a certain amount of time to produce a given amount of output. In the latter case, 
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the output targeted by the work unit can be thought of as the size of the project 
or task undertaken. 
 In software development, output is an elusive concept to represent and 
measure. It’s by and large a subjective notion whose interpretation it the cause 
of much controversy.  To be meaningful, the measure of output should correlate 
with how much technical functionality is provided by the software artifact 
produced. Yet there is no universally accepted way of counting technical 
functionality. We use the most widely adopted and easy to compute measure, 
lines of code (LOC). However, LOC is just a proxy. Some argue that it is not an 
appropriate measure of output in that LOC may not always correlate well with 
the amount of functionality delivered. More abstract measures, such as function 
points, have been suggested as alternatives, but these are not suitable for use in 
our analysis because of their coarse and non-uniform granularity.  
 The unit of two empirical parameters, productivity and defect rate, depend 
on the adopted unit of ω. If LOC is substituted by another output measure, the 
units of productivity and defect rate will change accordingly.    
 Having defined output, the three empirical parameters of the development 
process are:  

• π: productivity (LOC/hour). The average hourly output of the work unit.   

• β: defect rate (defects/LOC). The average number of defects per unit of 
output (per LOC) associated with the work unit.  

• ρ: rework speed (defects/hour). The speed at which the work unit fixes 
defects in a piece of previously deployed code, after the defects have been 
discovered.   

The values of these three parameters are determined empirically based on 
past research studies and statistics reported in the literature. The chosen values 
are primarily for illustration purposes, and represent information available at the 
time of writing. The actual values could be different, and they would most likely 
be both project- and skill-dependent. The specific results reported here are 
sensitive to the empirical parameters to varying extents, however we believe that 
the general conclusions are much less so under the assumptions of the analysis.   
A sensitivity analysis is performed at the end of the paper. 

PRODUCTIVITY : 
According to a study by Hayes and Over [19], the average productivity rate of 
196 developers who took PSP training was 25 LOC/hour. This figure will be the 
chosen value of π for N = 1 (soloist).   Note that the developers in the PSP 
training course were essentially free from normal business interruptions.  As a 
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result, this figure may seem high when compared with productivity figures 
based on monthly rates in which programmers’ total output is compared with 
their total time (including meetings, absences, vacation, etc.).  However, the 
Hayes and Over productivity figure is appropriate for our analysis as we use 
compressed time in all measures. We use the term compressed time to refer to 
pure programming time (including rework time that is associated with fixing 
defects). Compressed time excludes interruptions, vacation, and idle time.  

The University of Utah study [34, 35] reported that a pair spends on average 
only 15% more effort (in total person-hours) than a soloist to complete the same 
programming task. This result however was not statistically significant, with 
approximately a 40% probability of the observed difference in the mean being 
due to chance. Although further analysis was not performed on the data set to 
verify whether the two-tailed t-test employed was powerful enough to detect the 
difference at the specified alpha level in the first place, anecdotal evidence [1, 32, 
33] is supportive of no significant total effort penalty for pair programmers after 
pair jelling has occurred [2, 34, 36].  Pair jelling is the time period in which 
programmers learn to work effectively in a pair, to give and to accept objective 
suggestions, and to communicate during development. In our firsthand 
observations, there is a one-time jelling cost of between 1to 40 hours the first 
time a programmer pairs.  Subsequently, there is another short 30-60 minute 
jelling period when a programmer pairs with a different programmer for the first 
time; during this time the programmers learn each other’s strengths and 
weaknesses relative to their own. 

We err on the conservative side by assuming that the observed 15% 
difference is real. With this assumption, in a single person-hour, each 
programmer of a pair produces an average of 25/(1.15) = 21.74 LOC, and 
together they produce twice this volume, or 43.48 LOC. Thus, benchmarked 
relative to the baseline PSP productivity level of 25 LOC/hour, the value of π 
for N =2 (pair) is taken to be a conservative 43.48 LOC/hour.   

These pair productivity rates are within 20-30% of those recently reported 
by a technology company in India that used both pair and solo programming in a 
Voice-over-IP project. This project reported a pair-to-soloist productivity ratio 
of 2.8 (3.3 KLOC/month for solo programmers versus 9.6 KLOC/month for pair 
programmers based on a 60-hour work week) [33]. Note that this ratio is much 
higher compared to the more conservative ratio of 1.74 adopted here.  

DEFECT RATE : 
According to Jones [22], code produced in the US has an average of 39 raw 
defects per thousand LOC (KLOC). This statistic is based on data collected from 
such companies as AT&T, Hewlett Packard, IBM, Microsoft, Motorola, and 
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Raytheon, with formal defect tracking and measurement capabilities. According 
to the same reference, on average, 85% of all raw defects are removed via the 
development process, and 15% escape to the client.   

Together the two pieces of statistics suggest an average post-deployment 
defect rate of (0.039)(0.85) = 0.00585 defects/LOC. The number is consistent, 
though on the low side, with data from the Pentagon and the Software 
Engineering Institute, which indicate that typical software applications contain 
5-15 defects per KLOC [18]. We adopt the average 0.00585 defects/LOC as the 
baseline soloist value of β, for N = 1.  

During the empirical study of pair programming vs. solo programming, 
Williams [9, 10, 34, 35] observed that at the end of the project, code written by 
pairs on average passed 90% of the specified acceptance tests compared to code 
written by soloists, which passed on average only 75% of the same test suite. 
The results were statistically significant at an alpha level of less than .01. 
Assuming that the test suite provided full coverage, this result suggests a pair-to-
soloist post-deployment defect rate ratio of .6 (corresponding to an improvement 
rate of 1 – .6 = 40%). Thus benchmarked relative to the soloist (N = 1) baseline 
value of 0.00585 defects/LOC, the adopted value of β for a pair (N = 2) is 
(0.00585)(0.6) = 0.003510 defects/LOC.  

The adopted soloist value of β is close to the average defect rate of 0.00534 
defects/LOC reported by the Indian company mentioned previously [33]. 
However, for pairs, the company reported defect rates that are an order of 
magnitude lower than the adopted β value of 0.003510 defects/LOC, both 
during unit testing (at 0.0002 defects/LOC) and during acceptance testing (at 
0.0004 defects/LOC), corresponding to an improvement of over 90% over 
soloists. In the initial analysis, we will err on the conservative side again by 
adopting the figures yielded by the University of Utah study. Later in the paper, 
sensitivity analysis will show how an improvement as dramatic as the one 
reported by the Indian company affects the results.  

REWORK SPEED : 
A study of a set of industrial software projects from a large telecommunications 
company [29] reported that each discovered (post-deployment) defect required 
an average of 4.5 person-days, or 33 person-hours of subsequent maintenance 
effort or rework (based on a 7.5-hour workday).  This statistic is consistent with 
data reported by Humphrey [21]. Based on this observation, the value of rework 
speed ρ for a soloist (N =1) is taken to be 1/33 = 0.0303 defects/hour. Again this 
servers as our baseline value for computing the pair defect rate.  
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No data is available regarding the effect of pair development on rework 
activities. We will assume pairs can achieve rework productivity gains 
comparable to those reported for the initial development activities. Under this 
assumption, the estimated rework speed ρ for a pair (N = 2) will be 
(2)(0.0303)/1.15 = 0.0527 defects/hour. This assumption would especially be 
valid for agile development processes such as Extreme Programming, where no 
clear separation exists between rework and development activities. 

INITIAL ABSTRACT MODELS: 
For now we leave υ, the value realization model, unspecified since it will not be 
needed for the initial comparison. Thus the initial abstract models that represent 
the two development processes are:  

Solo = {N = 1, π = 25.0, β = 0.00585, ρ = 0.0303}, 

Pair = {N = 2, π = 43.478, β =  0.003510, ρ = 0.0527}. 

Note that pair jelling costs [2, 34, 36] have been excluded in this model. At 
this point, we have no viable empirical data beyond the anecdotes discussed 
above regarding jelling costs.  Exclusion of jelling costs injects a bias into the 
analysis in favor of pair programming. If jelling cost is a one-time cost, this bias 
should not be significant. However if it is recurring due to pair rotation or 
turnover, it should be factored into the productivity parameter to eliminate the 
bias. Fortunately, productivity is the least sensitive of the three empirical 
parameters, as discussed below. This helps reduce the bias in the analysis.  

 
THE BASIC COMPARISON MODEL 

 
The basic comparison model consists of three metrics:  efficiency, unit effort, 
and unit time. 
 
EFFICIENCY: 
Efficiency, ε, is defined as the percentage effort spent on developing new code, 
exclusive of the effort expended on rework.  Given a productivity rate of π, the 
effort required to produce ω lines of code of output is given by: 

 := Epre
ω N

π
 

This quantity specifies the initial development (or pre-deployment) effort. 
Initial development is followed by rework (or post-deployment) effort once the 
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code has been deployed (fielded, or delivered to the client).  Rework effort, Epost, 
refers to the maintenance effort expended to fix runaway defects after a piece of 
new code has been deployed and all such defects have been found.  

 := Epost
ω β N

ρ  

Here ωβ is the total number of defects and ρ is the speed of rework. Effort 
is always adjusted to the work unit by multiplying it by the work unit’s size N.  

Total effort, Etot, is the sum of the initial development and rework efforts: 

 := Etot
ω N ( ) + ρ β π

π ρ  

Efficiency, ε, is then the ratio of the initial development effort Epre to the 
total effort Etot. It is thus given by: 

 = ε
ρ

 + ρ β π  

The percentage effort spent on rework then equals 1 –  ε, or:  

β π
 + ρ β π

 

It may seem counterintuitive at first that efficiency and productivity are 
inversely related. Why should increasing productivity reduce efficiency? It is 
because under a constant defect rate, the number of post-deployment defects 
increases with output.  Therefore, all other parameters remaining same, an 
increase in productivity results in a higher number of total post-deployment 
defects, increasing the rework effort, and ultimately decreasing the percentage 
effort spent on initial development.   

Some development techniques allegedly increase productivity while 
reducing the defect rate at the same time. For example, agile development 
processes claim to achieve this [3]. If such is the case, simultaneously, a 
reduction in βπ and an increase in ρ result, and consequently efficiency 
increases.  

 
UNIT EFFORT : 
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Unit effort, UE, is the total effort, in compressed person-hours, required to 
produce one unit (LOC) of defect-free output. Compressed time refers to time 
excluding interruptions, delays, other overhead, and idle time.  
 It is calculated by dividing total effort Etot by total output ω corresponding to 
that output. Expressed in terms of productivity and efficiency, unit effort is 
given by: 

 := UE
N

π ε  

UNIT TIME: 
Unit time, UT, is the compressed elapsed time, in hours, required to produce one 
unit (LOC) of defect-free output. Elapsed time is measured as the delta between 
the times of occurrence of two events.  

Unit time is calculated by dividing unit effort UE by the size of the work 
unit N.  Expressed in terms of productivity and efficiency, unit time equals: 

 := UT
1

π ε
 

RESULTS OF BASIC COMPARISON MODEL: 
Table 1 compares the two abstract models Solo and Pair with respect to the 
metrics efficiency, unit effort, and unit time.  In each row, the cell in bold 
typeface indicates the more favorable alternative with respect to the 
corresponding metric. The model Pair fairs considerably better in all of the three 
metrics, amounting to nearly 100% improvement in efficiency, over 40% 
reduction in unit effort, and over 70% reduction in unit time.  

 

Table 1.  Comparison of the models Solo and Pair using the base comparison model 
metrics of efficiency, unit effort, and unit time.  

 Solo Pair 

Efficiency (ε) 
(decimal %) 

.172 .340 

Unit Effort (UE) 
(person-hours/LOC) 

.233 .135 

Unit Time (UT) 
(hours/LOC) 

.233 (= UE) .068 
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THE ECONOMIC COMPARISON MODEL 
 
A software project incurs costs as it accumulates labor hours and realizes 

value as it delivers new technical functionality for the end users.  A project is 
economically feasible when the total value it creates exceeds the total cost it 
incurs. We assume that the net value generated depends on four factors: (1) the 
project’s labor cost; (2) the value that the project earns commensurate with the 
output it produces; and (3) the way in which this earned value is recognized, or 
realized, through a specific pattern of deploying the output produced; and (4) the 
discount rate r used to bring the underlying cash flows to the present time. The 
economic comparison model takes into account the effect of each of these 
factors.   

 
LABOR COST: 
Programmer labor is often the most important cost driver in a software 
development project. Let Cpre,and Cpost denote the hourly average labor cost of 
initial development and rework, respectively, per person per hour, including 
salary and benefits. We will assume that initial development and rework are 
performed by the same work unit, resulting in the same constant value for both 
variables. Thus: 

Cpre,= Cpost= C  

We account for labor costs as such costs are incurred, in a similar fashion a 
business using accrual-based accounting would recognize expenses when they 
are transacted. However, to avoid choosing an arbitrary period for transacting 
labor costs, we assume instead that these costs are accrued in a continuous 
manner as a serious of infinitesimally small transactions.   
 
DISCOUNT RATE: 
When the costs and benefits of a project are spread over a long period of time, 
the economic analysis must take into account, in addition to their magnitude, the 
specific times at which these costs and benefits are recognized in terms of 
concrete cash flows. To maximize net economic value, a software project should 
realize benefits as early as possible and incur costs as late as possible.  
 We assume that the resulting cash flows are discounted at a fixed 
continuously compounded rate r from the time of their occurrence relative to the 
project’s start time.  The various interpretations of the discount rate – in terms of 
opportunity cost, time value of money, project risk, minimum required rate of 
return, or combinations thereof -- is beyond the scope of this paper. We refer the 
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reader unfamiliar to the standard capital budgeting literature; for example, see 
Ross [2].  

  
EARNED VALUE: 
Earned value (EV) is a well known quantitative project tracking method [7, 8, 
20, 21]. With EV tracking, a project’s expected outputs or resources are 
estimated and scheduled for delivery or consumption, respectively. As the 
project progresses, it earns value relative to this delivery/consumption schedule, 
so that at completion, the project’s earned value equals the total estimated output 
or the total estimated consumption.  For example, for a project with a target to 
produce 100 units of a product, after having produced 20 units, the project has a 
current EV of 20.  With a target of 200 units, after having produced the same 
amount of units, it has an EV of 10.  In both cases, every unit produced 
increases the accumulated EV by a fixed amount: by one unit in the former case, 
and by half a unit in the latter. Let this constant incremental value be denoted by 
V. Then earned value corresponding to a total output of ω is given by: 

:= EV V ω  

We refer to V, the value earned by one unit of output, as the unit value.  In 
our case, V corresponds to the average currency value of a single line of code, 
expressed in $/LOC.   
 According to this model, not every labor hour expended earns value. Effort, 
such as rework, that does not increase output or result in new technical 
functionality does not earn any value. Therefore earned value considers rework 
effort as wasted effort. Consequently, only projects that are 100% efficient earn 
extra value for each labor hour expended.  

      
VALUE REALIZATION:   

In software projects, earned value is not necessarily the same as realized 
value.  The distinction between the two is important.  Earned value can be seen 
more as an expression of potential value commensurate with effort spent given 
the productivity level of the development team. That value however may never 
be realized, for example if the project fails to deliver a useable artifact.  Potential 
value is realized when an artifact leaves production and is delivered to its client.  
This can be accomplished in small increments or in large chunks over the course 
of a software development project. The rate at which realized value accumulates 
depends on the frequency with which working code fragments are deployed to 
the client.  Hence although value can be earned on a continuous basis, it may 
not be realized until much later.   
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The concept of realized value may also be explained in reference to the two 
alternative methods of income recognition of the Generally Accepted 
Accounting Principles [37].  In cash-based accounting, income from services 
rendered is recognized when services are paid for, while in accrual-based 
accounting, income from services are recognized when services are delivered. 
Thus the concept of realized value admits an accrual-based view of value 
recognition rather than a cash-based view.  
 New code is developed, deployed, and reworked in increments of different 
size, and as such, realized value is accumulated at the same pace as obligations 
regarding the different size increments are fulfilled.  In the economic analysis, 
we consider two alternative value realization models: single-point delivery 
(value realized at the end) and incremental delivery (value realized 
incrementally on a continuous basis). These two models are located at the 
opposite extremes of the value realization spectrum.  The contrast helps 
demonstrate the impact of the underlying pattern of value realization on the 
economic feasibility of a process.  Most real projects fall somewhere in between 
these two theoretical extremes. In contract-based development, the terms of the 
contract dictate the actual value realization pattern.  New contracting models are 
being put forward with different compensation structures; for example, see Beck 
and Cleal [5]. The model we use in our analysis can easily be adapted to a 
particular compensation model.   

 
The Single-Point Delivery Model 

With traditional, waterfall-like [28] models of software development, code 
delivery to the client often occurs in one large chunk. The scope of the project is 
fixed and finite. Hence, value is realized in a single step at the very end. We will 
refer to this value realization model as single-point delivery, or deferred 
realization. The single-point delivery model is illustrated in Figure 1.  The 
horizontal dimension denotes compressed elapsed time with respect to a single 
project.  Time τ marks the end of the project (completion). It also coincides with 
the time of the realization of value accumulated over the course of the project. 
Note that during rework, from τpre to τ, the project does not earn any extra value.  

 

 Development
τpre τ

Start Deploy Complete 

Rework 

 

Figure 1:  Single-point delivery model of value realization. 
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Incremental Delivery Model 
At the opposite end of the spectrum is the incremental delivery model. The 
scope of the project may not be predetermined, and the responsibility of the 
work unit may extend to perpetuity. New code is continuously developed, 
deployed, and reworked in small increments. Development of new code and 
rework of deployed code are intertwined in a never-ending cycle. Consequently, 
value is realized in very small increments as micro-obligations involving small 
chunks of new code are gradually fulfilled.   
 The generic incremental delivery model is illustrated in Figure 2. Again, the 
horizontal dimension represents compressed elapsed time. The ticks correspond 
to deployment points at which the work unit delivers new functional code. In the 
idealized version of the incremental delivery model, the distance between two 
subsequent deployment points approaches to zero, resulting to a truly continuous 
process. We will consider this idealized version only, which we refer to as the 
continuous delivery model. 

 

Start 

Rework …
Deploy DeployDeploy DeployDeploy

Rework ReworkReworkRework

 
Figure 2:  Incremental delivery model of value realization. 

 
EFFICIENCY OF DEFECT DISCOVERY: 
A factor that affects value realization is the efficiency of defect discovery. We 
define a defect as a fault that was not discovered or removed before deployment, 
but subsequently is discovered by the client.  Alternatively, in an environment 
where the client is integrated in the development team, defects may be 
discovered in collaboration with the work unit during the acceptance testing of 
new code.  Defect discovery efficiency involves two components: latency and 
coverage.  

Latency is the elapsed time between the deployment of a software artifact 
and the discovery of a fault by the client. Coverage is the number of defects 
reported or discovered in relation to the total number of defects (including those 
that have not been discovered).   

In practice, the discovery of defects by the client can neither be 
instantaneous nor complete. For example, Jones [22] states that in large 
industrial projects, more than half of the runaway defects (post acceptance 
testing) have a latency of one year, while total coverage four years after 
deployment hovers around 97%. Thus empirical evidence suggests an 
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exponential latency model with a half-life of roughly one year with traditional 
development.  In contrast, agile software development processes [4, 17], such as 
Extreme Programming and SCRUM [26], that rely on short cycles, continuous 
testing, and frequent client feedback will tend to have a low latency and high 
coverage.  

The economic analysis assumes a perfectly efficient defect discovery 
process: one with full coverage and zero latency. These idealized conditions are 
opposing in terms of their impact on net value: while increased coverage tends 
to decrease net value, increasing latency tends to increase it.  When the discount 
rate is taken into account, these assumptions lead to a conservative overall bias, 
with a mild tendency to underestimate net value. However the level of 
underestimation may be different for different processes.     
 

ECONOMIC COMPARISON MODEL 
 

NET PRESENT VALUE: 
The Net Present Value of a software project can be written as the difference 

between the present value (PV) of the project’s benefits and the present value of 
its costs.  This definition is adapted to the current context by representing the 
benefits in terms of earned value and the costs in terms of labor costs.  With this 
adaptation, NPV becomes very sensitive to changes in the unit value V.   

Figure 3 shows how NPV varies as V varies in the neighborhood of 5% to 
30% of the unit labor cost C for a pair under single-point delivery.  NPV is 
represented by the vertical axis. The NPV = 0 plane splits the V-Output space 
into feasible (NPV > 0) and infeasible (NPV < 0) regions. The range of V is 
chosen to emphasize the behavior of NPV in the neighborhood of this feasibility 
plane.  Note that the slope of the NPV curve changes drastically along the 
Output axis as V varies. Because of this sensitivity, our interest is not in NPV 
per se. We need a derived metric whose value can be used to rank two 
alternatives independent of a particular choice of unit value. Breakeven Unit 
Value meets this need. 
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Figure 3:  NPV as a function of unit value V and output ω for a fixed discount rate r 
= 0.1.  Output is plotted in KLOCs. The labor cost C is set to 50. V varies from 5% 
to 30% of the labor cost C. 

 
BREAKEVEN UNIT VALUE – A RELATIVE RETURN-ON-INVESTMENT METRIC: 
Breakeven Unit Value is the threshold value of V above which the NPV is 
positive: 

BUV = min{ V | NPV ≥ 0 } 

BUV is determined by setting solving the equation NPV = 0 for V. Recall 
that V is measured in $/LOC, and represents the fixed increase in earned value 
per each additional unit of output produced.  

A small BUV is better than a large BUV. As BUV increases, a project 
becomes less and less worthwhile because higher and higher margins are 
required to move NPV into the feasible region. Thus, we can think of BUV as a 
relative measure of return on investment. 

 
BREAKEVEN UNIT VALUE RATIO (BUVR): 
Using BUV ratios, we can make a one-step comparison between two processes 
to gauge their relative feasibility. Define BUV Ratio (BUVR) as the ratio of the 
BUV of model Soloυ to the BUV of Pairυ, where υ denotes one of the two value 
realization models. 

 = BUVR
BUV solo

BUV pair
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Values of BUVR greater than unity indicate an advantage for pairs; values 
smaller than unity indicate an advantage for soloists. As this ratio increases, the 
advantage of the pair over the soloist also increases.  

The metric BUVR makes the comparison between the two paradigms not 
only independent of V, but also of the hourly labor cost C.  BUVR depends on: 

• the internal parameters of the models Solo and Pair, 

• the value realization model υ ,  and 

• the discount rate and the output (applicable only under the single-point 
delivery model). 

 
SUMMARY OF RESULTS: 
Table 2 summarizes the results of the economic comparison. The process 
models Soloυ and Pairυ are compared under two value realization models with 
respect to the BUVR metric. The two value realization models considered are 
the single-point delivery model (υ = 1) and the idealized version of the 
incremental delivery model (or the continuous delivery model, υ =∞).    

In the table, r denotes the discount rate. Projects of higher risk usually 
require the use a proportionately higher discount rate. Note that we apply the 
same discount rate for both negative cash flows (costs) and positive cash flows 
(benefits). In practice, costs and benefits may be subject to different levels and 
types of risk, possibly warranting the use of different discount rates. A detailed 
discussion of the relationship between risk, return, and discount rate is beyond 
the scope of this paper, but can be found in any introductory corporate finance 
text [27].  

Comparison 1 (single-point delivery) depend both on the discount rate and 
the amount of output produced by the development unit.  In general, as the 
discount rate and output increase, BUVR, hence the advantage of pairs over 
soloists, increases (with a slightly positive second partial derivative). In 
comparison 2 (continuous delivery model), the BUVR is constant and greater 
than unity, representing a steady advantage for pairs.   

The limit behaviors are described by the rows “As ω or r approaches to 
infinity” (development continues to perpetuity or discount rate is very high) and 
“As δ approaches to 0”. The subsequent row is the range of BUVR for each 
comparison when both the discount rate and output range from zero to infinity. 
The final row specifies which model fares better in each case. 

Overall, a pair operating under the continuous delivery model (the model 
Pair∞) yields the lowest (best) BUV since this model combines the improved 
efficiency and productivity of the pair with the advantage of incremental value 
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realization. These results highlight the impact of the realization model on the 
economic analysis.  

The findings are sensitive to the three empirical parameters π (productivity), 
β (defect rate), and ρ (rework speed) to varying degrees. The next to last row of 
Table 2 summarizes the results of sensitivity analyses. Sensitivity is discussed in 
more detail later in the paper. 

 
 

Table 2.  Comparison of the models Solo and Pair under different value realization 
models using BUVR 

 Models Compared 
BUVR Behavior  
(BUVR = BUVsolo/BUVpair) 

1. Solo1 to Pair1 
(Single-Point Delivery)  

2. Solo∞ to Pair∞ 
(Continuous Delivery) 

As discount rate (r) increases:  BUVR increases at an 
increasing rate 

BUVR is constant 

As output (ω) increases:  BUVR increases  BUVR is constant 
As ω or r approaches to infinity: BUVR approaches to 

infinity 
BUVR remains 
constant at 1.3 

As δ approaches to 0  BUVR approaches to its 
min. value of 1.5  

BUV remains 
constant at 1.3 

Range of BUVR when the empirical 
parameters are fixed:  

[1.5, ∞) Constant at 1.3 

Sensitivity of BUVR to changes in 
empirical parameters: 
 
Defect Rate (β): 
Productivity (π): 
Rework Speed (ρ): 

 
  
 

High 
Low 

Medium 

 
 
 

High 
Low 

Medium 
Overall better model Pair1 Pair∞ 

  
 
BENEFITS AND COSTS IN SINGLE-POINT DELIVERY: 
We now explain the elements of the economic analysis for the single-point 
delivery model in more detail. When value is realized only at project 
completion, NPV can be written as: 

:= NPV1  − DRV TDC 1
 

 

 Here DRV denotes Deferred Realized Value, IRV denotes Incremental 
Realized Value, and TDC denotes Total Discounted Cost. Each of these 
parameters is discussed in detail below. 
 
Deferred Realized Value 
Deferred Realized Value (DRV) is the accumulated earned value at project 
completion expressed in present value terms. DRV is given by: 
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 := DRV V ω e
( )−r τ  

 
 

where EV is the earned value, τ is time to completion expressed in compressed 
elapsed time, and r is the fixed, continuously compounded discount rate. The 
factor e(-rτ) brings the deferred EV to the present time.  
 Expressed in terms of unit value V and output ω, DRV equals: 

 := DRV V ω e











−
r ω

π ε hy

 

where π is the process (work unit) productivity (LOC/hour), ε is the process 
(work unit) efficiency (unitless), and hy is the total number of labor hours in a 
calendar year.  

An optimal level of output exists that maximizes the deferred realized 
value. This level of output is defined by the root of the partial derivative of DRV 
with respect to ω: 

 
 = 

∂
∂
ω

DRV 0  

 

Then maximum DRV is given by: 

 = DRV max

V π ε hy e
( )-1

r
 

Note that maximum DRV increases with efficiency, but decreases with 
discount rate.  Since V, hy, and, r are constant, the maximum DRV ratio of a 
soloist to a pair is simply given by (πsolo εsolo)/(πpairεpair) = UTpair/UTsolo, yielding 
a constant value of 0.39. This implies that the maximum value realizable under 
the single-point delivery model by a soloist is less than half the maximum value 
realizable by a pair. This limit is independent of unit value and discount rate.  

 
Marginal Cost 
Marginal cost is the additional cost accumulated by a work unit per unit time of 
work.  For the single-point delivery model, marginal cost before and after 
deployment will be different if hourly labor cost for initial development and 
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rework are different. We will calculate a total discounted cost based on this 
general case, and then use the assumption Cpre = Cpost to simplify the result. 

For a project with τ years to completion and a process efficiency of ε, the 
Marginal Initial Development Cost in dollars per year is given by: 

 := mCpre

E ε Cpre

τ
 = hy N ε Cpre

 

 

Similarly, the Marginal Rework Cost in dollars per year is: 

 := mCpost

E ( ) − 1 ε Cpost

τ
 = −hy N ( )−  + 1 ε Cpost

 

 
Total Discounted Cost can now be calculated from these two components.  
 

Total Discounted Cost 
We assume that labor costs are incurred on an ongoing basis as a project 
progresses. This is a reasonable assumption since corporations incur payroll 
cash flows in regular discrete installments, for example, on a weekly, bi-weekly, 
or monthly basis. Labor costs are discounted as they are incurred. For projects 
with a sufficiently long time horizon, a continuous model is a reasonable 
frequency-independent approximation to the discrete model in which labor costs 
are incurred in a periodic manner.  

With these assumptions in mind, the Total Discounted Cost for the model 
Solo1 is obtained by summing marginal costs accumulated over infinitesimally 
small intervals, both before and after deployment: 

 := TDC 1  + d⌠

⌡


0

τpre

mCpre e
( )−r t

t d⌠

⌡


τpre

τ

mCpost e
( )−r t

t

 

Here mCpre dt and mCpost dt represent initial development and rework costs, 
respectively, accumulated over a small interval dt in the neighborhood of 
elapsed time t. The factor e

( )−rt
brings the small cash flow that occurs over dt to 

the present time by discounting it over the period t. Here the variable of 
integration, t, is measured in units of compressed elapsed time.  

When Cpre = Cpost = C, the sum of the two integrals reduces to: 
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hy N C ( )−  +  −  +  + 2 ε e
( )−r τpre

ε e
( )−r τ

e
( )−r τpre

ε e
( )−r τ

r
 

By substituting 

 
 = τ

ω
π ε hy            

 = τpre
ω

π hy   

in the above equation based on the relationship between compressed elapsed 
time τ and output ω, it is possible to express Total Discounted Cost in terms of 
total output ω and efficiency ε.  

 
BUV in Single-Point Delivery 
Under the single-point delivery model, BUV depends on both output (ω) and 
discount rate (r). It increases as either of these variables increases.  Figure 4 
shows BUV for the model Pair1 (pair under single-point delivery), for a fixed 
labor cost of C = $50/hour. BUV increases with output as well as with discount 
rate because of deferred value realization under the single-point delivery model, 
where higher and higher profit margins are required as total time to completion 
increases.  

 

 
Figure 4:  Breakeven Unit Value for the model Pair1 for a fixed hourly labor cost of  

$50. Output is in KLOCS.  

 
When the discount rate is zero, BUV in the single-point delivery model is 

given by: 

 = lim
 → r 0

BUV 1
( ) −  + 1 2 ε 2 ε2 N C

π ε  
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The limit yields a constant minimum BUV both for a pair and for a soloist. 
 

BUVR in Single-Point Delivery  
The economic advantage of pairs over soloists is evident in the single-point 
delivery model. BUVR is at least 2.24 when the discount rate is zero. In other 
words, the BUV for a soloist is at least 124% higher than the BUV for a pair. 
The pair’s advantage increases as output or discount rate increases.  The effect is 
illustrated in Figure 5, which plots Solo1 to Pair1 BUVR as a function of total 
output and discount rate. Pairs accumulate costs faster, but more than 
compensate for this by realizing value earlier. The larger the project or the 
higher the discount rate, the more pronounced is the advantage of pairs over 
soloists.  

As can be seen in Figure 5, BUVR is not very sensitive to changes in the 
discount rate although BUV itself is (Figure 4). Taking the ratio smoothes the 
impact of discount rate out to a certain degree. For example, even at high values 
of output (for large projects), a six-fold increase in the discount rate increases 
the BUVR by less than 19%. Below an output of 5 KLOC (for small projects), 
BUVR increases by less than 6%.   

 

 
Figure 5:  BUVR of the model Solo1 to the model Pair1 as a function of output for 

different discount rates. 

 
 
BENEFITS AND COSTS IN CONTINUOUS DELIVERY: 
We now explain the elements of the economic analysis model for the continuous 
delivery model in more detail.  For the continuous delivery model, NPV can be 
expressed as: 
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:= NPV∞  − IRV TDC ∞  

 Here IRV denotes Incremental Realized Value, and TDC again denotes 
Total Discounted Cost.  
 
Marginal Value Earned 
Marginal Value Earned (MVE) is the average value earned per additional unit 
of elapsed time (measured in $/year, elapsed time is in terms of compressed 
time). Given a completion or cut-off time of τ, measured in compressed elapsed 
time, MVE equals:   

 := MVE  = 
EV
τ

V ω
τ

 

Representing output ω in terms of elapsed time eliminates the variable τ, 
allowing MVE to be expressed as a function of productivity π and efficiency ε:  

:= MVE V π ε hy  

Incrementally Realized Value 
Incrementally Realized Value (IRV) is the total value earned over a given time 
period. Since value realized as earned, it is also discounted as earned. If τ is the 
time to project completion or the cut-off time, then IRV is given by: 

 := IRV d⌠
⌡


0

τ

MVE e
( )−r t

t

 

As usual, the variable of integration, t, is measured in compressed elapsed 
time. Expressed in terms of efficiency ε and productivity π, IRV equals: 

 := IRV −
V π ε hy ( ) − e

( )−r τ
1

r
 

As the cut-off date approaches infinity, IRV asymptotically approaches its 
maximum value. This limit represents the value of operating a single work unit 
to perpetuity under constant discount rate. Maximum IRV is given by: 

 = IRV max

V π ε hy

r
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 As with Deferred Realized Value, maximum IRV increases with efficiency 
and decreases with discount rate.   

Pairs achieve a 53% higher maximum IRV than soloists.  Since the discount 
rate (r), the unit value (V), and the number of labor hours in a calendar year (hy) 
are the same for both soloists and pairs, the pair-to-soloist ratio of maximum 
IRV is given directly by the pair-to-soloist ratio of efficiency.  

 
Marginal Cost 
Marginal cost was defined as the expected incremental cost of development and 
rework per additional unit of elapsed time. The same definition remains in effect 
here, but its computation is slightly different than the one for the single-point 
delivery model. Since in the continuous delivery model, initial development and 
rework are intertwined, marginal cost, mC∞, can be written as: 

 := mC∞

 + E ε Cpre E ( ) − 1 ε Cpost

τ
 

where E is the total effort. When Cpost = Cpre = C, marginal cost reduces to: 

 = mC∞ hy N C  

Total Discounted Cost 
As is the case in the single-point delivery model, under the continuous delivery 
model, labor costs are accrued and discounted as they are incurred to calculate 
the Total Discounted Cost (TDC). If the variable t represents compressed 
elapsed time, TDC can be written by the following integral: 

 := TDC ∞ d⌠

⌡


0

τ

mC∞ e
( )−r t

t

 

After substituting the marginal cost with the corresponding term, the above 
definite integral reduces to: 

 := TDC ∞ −
hy N C ( ) − e

( )−r τ
1

r
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Maximum Discounted Cost  
The Maximum Discounted Cost that a work unit under the continuous delivery 
model can earn at a constant discount rate is the asymptotic value of TCD 
incurred by the work unit to perpetuity. This limit is given by: 

 = TDC ,∞ max

hy N C
r

 

A pair consistently incurs twice the maximum discounted cost incurred by a 
soloist. This is because the ratio of maximum TDC is determined solely by N, as 
the labor cost (C) and the discount rate (r) are assumed to be the same for both 
models.   

 
BUV in Continuous Delivery 
When both value realization and cost accumulation are continuous and 
incremental, BUV’s dependence on output and discount rate is broken in the 
continuous delivery model.  Generically, BUV under the continuous delivery 
model is given by: 

 := BUV ∞

N C
π ε  

This yields, for a fixed labor cost of C = $50/hour, a Breakeven Unit Value 
of 11.652 for the model Solo∞ and 8.96 for the model Pair∞. 

 
BUVR in Continuous Delivery  
The BUVR under the continuous delivery model is given by: 

 = BUVR ∞

Nsolo πpair εpair

Npair πsolo εsolo

 

The value of BUVR is thus constant at 1.73 under this model of value 
realization, representing a steady 42% (1 – 1/1.73) advantage for pairs (model 
Pair∞) over soloists (model Solo∞).  Note that this advantage is present 
regardless of the discount rate and the level of output produced. 
 
 

 
SENSITIVITY ANALYSIS 
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Figures 5 to 7 already illustrated the sensitivity of the BUVR to the two 
exogenous parameters––namely discount rate (r) and output (ω). The results are 
summarized in Table 2.  In the single-point delivery model, BUVR is mildly 
sensitive to both discount rate and output. In the continuous delivery model, 
BUVR is invariant so it is not sensitive to either of these parameters.  

What about the three endogenous empirical parameters, productivity (π), 
rework speed (ρ), and defect rate (β). Since these parameters are descriptive of 
the development process and the work unit, they warrant further investigation.   
As summarized in Table 2, BUVR is most sensitive to changes in defect rate, 
but less so to changes in rework speed, and even less to changes in productivity.     

Recall the two pairs of model being compared from Table 2: 
• Comparison 1: Solo1 & Pair1 

• Comparison 2: Solo∞  & Pair∞ 

In the following graphics, the number next to each curve denotes the 
comparison being made according to the above scheme. We analyze each 
empirical parameter in order from least to most sensitive. For the production of 
the graphics, we maintained the discount rate and the output at the arbitrary 
values of 0.1 (10%) and 7.5 KLOC, respectively. The particular choice of these 
exogenous parameters only marginally displaces the curves within reasonable 
ranges, and do not affect the sensitivity results with respect to the three 
empirical parameters.  

We will characterize the sensitivity of BUVR to an empirical parameter 
over a given range as insignificant if the partial derivative of BUVR with respect 
to the percentage increase in that variable over the range in question is hovering 
around zero; mild if the absolute value of the partial derivative is consistently 
less than unity, but non-zero; moderate if the absolute value is hovering around 
unity; and significant if it is consistently greater than unity. Table 3 summarizes 
the sensitivity analysis results.  
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Table 3.  BUVR Sensitivity of findings to empirical parameters. 

 Models Compared 
BUVR sensitivity 
(range specified as percent improvement) 

1. Solo1 & Pair1 2. Solo∞  & Pair∞ 

Productivity (π) over range 0%  to 80% Mild Mild 
Productivity (π) over range 80%  to 400% Insignificant Mild to Insignificant 
Rework speed (ρ) over range 50% to 200% Moderate Mild 
Rework speed (ρ) over range 200 to 400% Mild Insignificant 
Defect rate (β) over range 5 to 20% Moderate Moderate 

Defect rate (β) over range 20 to 85% Significant Significant 

Defect rate (β) in neighborhood of 85%  Insignificant Significant 

 
 
SENSITIVITY TO IMPROVEMENT IN PRODUCTIVITY: 
Figure 8 illustrates the sensitivity of the results to the level of improvement in 
productivity (π) achieved by pairs over soloist.  The percentage improvement is 
expressed relative to the previously adopted productivity value of 25 
KLOC/hour for the model Solo. The dotted vertical line marks the benchmark 
level of improvement achieved by the model Pair according to the University of 
Utah study.  

Overall, BUVR is mildly sensitive to productivity improvements. Both 
comparisons are initially mildly sensitive to improvements in productivity. The 
sensitivity decreases as the productivity improvement increases.  Around the 
benchmark level of 74%, the effect is insignificant in comparison 1 and mildly 
significant in comparison 2. 

 

1 

2

 
Figure 8:  Sensitivity of  BUVR to improvements in productivity. 
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SENSITIVITY TO IMPROVEMENT IN REWORK SPEED: 
Figure 9 illustrates the sensitivity of the results to the level of improvement in 
rework speed (ρ) achieved by pairs over soloist.  The percentage improvement is 
expressed relative to the previously adopted rework speed value of 0.0303 
defects/hour for the model Solo. The dotted vertical line again marks the 
benchmark level of improvement corresponding to the model Pair according to 
the University of Utah study.  

Overall, BUVR is mild to moderately sensitive to rework speed. Both 
comparisons exhibit a diminishing sensitivity to improvements in rework speed. 
For comparison 1, a marginal increase in the rework speed of pairs over soloists 
provide a matching benefit up to an improvement level of around 200%, which 
we characterize as moderate sensitivity.  At the benchmark level of 74%, the 
effect is moderately sensitive in comparison 1 and mildly sensitive in 
comparison 2.  

 
 

 
 

1 

2

 
Figure 9:  Sensitivity of  BUVR to improvements in rework speed. 

 
SENSITIVITY TO IMPROVEMENT IN DEFECT RATE: 
Figure 10 illustrates the sensitivity of the results to the level of improvement in 
defect rate (β) achieved by pairs over soloist.  The percentage improvement is 
expressed relative to the adopted rework speed value of 0.00585 defects/LOC 
for the model Solo. Unlike in rework speed and productivity, an improvement in 
defect rate corresponds to smaller, not larger, values of  β.  A maximum 
improvement of 100% corresponds to a defect rate of zero.  As before, the 
dotted vertical line marks the benchmark level of improvement corresponding to 
the original model Pair.   
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Overall, BUVR is initially moderately sensitive to changes in defect rate, 
and then becomes increasingly significantly sensitive to it. Around the 
benchmark level of 60%, the effect is significant. A deviation from this behavior 
occurs around the 85% improvement neighborhood in comparison 1. There the 
BUVR peaks and then starts to decline. The peaking effect is attributed to the 
increasing double labor cost of pairs finally overtaking the diminishing savings 
from reduced rework effort due to low defect rates.  The peaking effect is absent 
in comparison 2 because of the effect of incremental value realization. 

 
 

1 

2

 
 

Figure 10:  Sensitivity of  BUVR to improvements in defect rate.  

  
CONCLUSION AND FUTURE WORK 

 
Quantitative analyses demonstrate the potential of pair programming as an 
economically viable alternative to individual programming. We compared the 
two practices under two different value realization models. In each case, we 
found that pair programming generally creates superior economic value based 
on data from a previous empirical study and other statistics reported in the 
general software engineering literature. Although the techniques and concepts 
employed in the analysis are standard, their use in this particular type of 
assessment, especially the incorporation of value realization considerations, is 
novel.  

In both practices, net value is maximized when the project realizes value 
incrementally, for example, through frequent releases. This observation is fully 
consistent with the general engineering economics intuition that emphasizes 
early and speedy value realization [7]. The more interesting question that was 



www.manaraa.com

SUBMITTED DRAFT   

addressed by the analysis is how fast a project can afford to spend before the 
rate of spending overtakes the benefits of early value realization.  

Although the findings are not very sensitive to the two exogenous 
parameters, output and discount rate, they are particularly sensitive to an 
endogenous parameter, the defect rate. Discount rate was a determining factor 
between the two practices only in one comparison.  

The sensitivity to defect rate is not particularly surprising, since the case for 
pair programming largely hinges on a significant improvement in defect rate. 
Our observation confirms that further studies of pair programming should focus 
on defect rate.  

The analyses performed relied on several assumptions. The main ones were 
the exclusion of pair jelling and other relevant overhead costs, the process 
efficiency bias due to the particular definition of time to completion, and the 
zero-latency and full-coverage assumptions regarding defect discovery. These 
assumptions can be relaxed at the expense of additional model complexity.   

The zero-latency defect discovery is not a problematic assumption because 
post-deployment defects are found by the clients of the deployed code, and not 
by the developers (the work unit). As a result, defect discovery time is not 
included in the development effort neither for solo programmers nor for pair 
programmers. Therefore, even if finding defects becomes more difficult in the 
field as the number of remaining defects decreases, no bias is introduced by the 
difference in the post-deployment defect rate between the two practices.  

Other considerations include following: 
• The disconnect between realized value and business value. We used earned 

value (expressed in terms of output and unit value) rather than business 
value, as a proxy for benefits. The inclusion of business value would be 
meaningful only in concrete contexts because business value strongly 
depends on project- and market-related factors. Business value can be 
tackled by redefining realized value independently of earned value, in terms 
of a separate exogenous parameter.  An earlier version of the economic 
model adopted this view, however, we didn’t find it suitable for a generic 
analysis.    

• Treatment of more realistic value realization models that fall between the 
two extremes discussed. Intermediary models can be tackled by breaking up 
development along an orthogonal dimension with two components:  initial 
release and subsequent releases. Frequency of subsequent releases can be 
used as a sensitivity parameter to determine an optimal release cycle. Again, 
this kind of treatment is most useful if different alternatives are evaluated in 
a specific, concrete context, rather than for a general comparison.  
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• More sophisticated characterizations of the empirical models. Sensitivity 
analyses provide much insight when the empirical models are sufficiently 
well described by the mean values of the parameters involved. When these 
parameters are subject to high-levels of variability from one organization or 
project to another, or even within a single project, and exhibit mutual 
dependencies, their joint distributional properties become important. If 
empirical data can be used to infer these properties, probabilistic analyses 
can be performed at the lowest level. Sensitivity analyses can then be 
performed at the next level to gauge the impact of errors in the descriptive 
parameters of the hypothesized distributions.    

• Second-order interactions among individual practices.  It is possible for the 
substitution of one practice for another (in this case, pair programming for 
solo programming) to have unintended, but systematic effects in the rest of 
the practices shared by the two processes (CSP and PSP).  Such second-
order interactions could amplify or dampen the observations. Although the 
University of Utah study did not report effects of this kind, it is still possible 
that they existed, but were not detected by the study. Second-order 
interactions are typically complex, subtle, and difficult to detect. For 
example, pair programmer may be more effective when practiced in 
conjunction with test-driven development.  Future experiments can be 
designed specifically to reveal these hidden effects.   

The potential of pair programming as a viable alternative to traditional solo 
programming cannot be dismissed on economic grounds. However, in 
interpreting our findings, the reader should focus on the general behavioral 
properties of the comparison metrics defined, and not on their specific values. It 
should be kept in mind that the models used made several assumptions to keep 
the complexity at a minimum while allowing for meaningful analysis. In 
addition, the analyses performed relied on existing data of mixed origin, with no 
independent verification of consistency among the different sources. We remain 
cautious of portability of these figures since we have no information on the 
software development methods of the companies involved in those statistics. It 
would be beneficial to revise the models and repeat the analyses following 
further experimentation and assessment of pair programming with professional 
software engineers.  
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