
www.manaraa.com

SUBMITTED DRAFT

THE ECONOMICS OF SOFTWARE
DEVELOPMENT BY PAIR PROGRAMMERS

HAKAN ERDOGMUS

National Research Council, CANADA

LAURIE WILLIAMS
North Carolina State University, USA

ABSTRACT

Evidence suggests that pair programmers – two programmers working
collaboratively on the same design, algorithm, code, or test – perform
substantially better than the two would working alone. Improved quality,
teamwork, communication, knowledge management, and morale have been
among the reported benefits of pair programming. This paper presents a
comparative economic evaluation that strengthens the case for pair
programming. The evaluation builds on the quantitative results of an empirical
study conducted at the University of Utah. The evaluation is performed by
interpreting these findings in the context of two different, idealized models of
value realization. In the first model, consistent with the traditional waterfall
process of software development, code produced by a development team is
deployed in a single increment; its value is not realized until the full project
completion. In the second model, consistent with agile software development
processes such as Extreme Programming, code is produced and delivered in
small increments; thus its value is realized in an equally incremental fashion.
Under both models, our analysis demonstrates a distinct economic advantage of
pair programmers over solo programmers. Based on these preliminary results,
we recommend that organizations engaged in software development consider
adopting pair programming as a practice that could improve their bottom line.
To be able to perform quantitative analyses, several simplifying assumptions
had to be made regarding alternative models of software development, the costs
and benefits associated with such models, and how these costs and benefits are
recognized. The implications of these assumptions are addressed in the paper.

www.manaraa.com

SUBMITTED DRAFT

INTRODUCTION

Both anecdotal and statistical evidence [10, 24, 32, 34] indicate that pair
programming, the practice whereby two programmers work side-by-side at one
computer collaborating on the same design, algorithm, code or test, is highly
productive. One of the programmers, the driver, has control of the
keyboard/mouse and actively implements the design, program, or test. The
other programmer, the navigator, continuously observes the work of the driver
to identify tactical (syntactic, spelling, etc.) defects and also thinks strategically
about the direction of the work. On demand, the two programmers brainstorm
any challenging problem. Because the two programmers periodically switch
roles, they work together as equals to develop software. Many have used the
pair programming technique for decades, and several publications in the mid-
late 1990s extolled its benefits [11, 12, 24]. More recently, many impressive
anecdotes among those practicing the Extreme Programming (XP) software
development methodology [1, 3, 6, 30, 31] greatly aroused awareness of pair
programming as a technique to improve quality, productivity, knowledge
management, and employee satisfaction [10, 25, 34].

In 1999, a formal experiment was run to investigate the effectiveness of the
pair programming practice. The experiment was run with advanced
undergraduates at the University of Utah. Sometimes issues of external validity
are raised when empirical software engineering studies are conducted with
students. These issues arise because projects undertaken within a semester in
artificial settings need not deal with matters of scope and scale that often
complicate real, industrial projects. However, such settings are still valuable as
test-beds. They have the potential to provide sufficient realism at low cost while
allowing for controlled observation of important project parameters [13]. The
University of Utah empirical study focused on the interactions between and the
overall effectiveness of two programmers working collaboratively relative to
programmers working alone. Issues of complexity and scale are not significant
inhibitors in such a study.

Software development methodologies, or processes, are prescribed,
documented collections of software practices (specific methods for software
design, test, requirements documentation, maintenance, and other activities)
required to develop or maintain software. Williams developed the Collaborative
Software ProcessSM (CSPSM) methodology as her dissertation research [35].
CSP is based on Watts Humphrey’s well known Personal Software ProcessSM
(PSPSM) [21], but is specifically designed to leverage the power of two
programmers working together. The University of Utah experiment assessed the

www.manaraa.com

SUBMITTED DRAFT

effectiveness of solo programming using the PSP vs. the effectiveness of pair
programmers using the CSP. These two processes were specifically chosen to
best isolate the effects of pair programming; essentially all the other practices
followed by the programmers were identical. The experiment yielded
statistically significant differences between the performance of pair
programmers and of individual programmers [9, 10, 34, 35]. In this paper, these
experimental results are used to perform a quantitative analysis of the economic
feasibility of pair programming. The findings complement and strengthen the
qualitative benefits of pair programming that have been reported previously.

The economic feasibility of pair programming is a key issue. Many
instinctively reject pair programming because they believe code development
costs will double: why should two programmers work on each task while a
single programmer can do the job? If the practice is not economically feasible,
managers simply will not permit its use. Organizations decide whether to adopt
process improvements based on the bottom-line implications of the outcomes.
Naturally, the goal of software firms is to be as profitable as possibly while
providing their customers with the best, high-quality products quickly and
cheaply.

The economic feasibility analysis of the pair programming practice centers
on how it fairs relative to solo programming under a given value realization
model. We assume a product realizes value when clients or end users are
delivered a working product. Even a partial, but working, product can provide
benefits. We will compare pair programming with solo programming first based
on simple performance metrics, and then considering these metrics under two
different value realization models. In the latter case, the analysis utilizes Net
Present Value (NPV) [27] as the basis for comparison. This approach per se is
not novel. Economic models based on NPV have previously been suggested to
evaluate the return on software quality and infrastructure initiatives; for
examples, see [7, 14-16, 23]. Our analysis differs in that it relies on a breakeven
analysis instead of a pure NPV analysis.

ASSUMPTIONS

The economic feasibility of pair programming is assessed by focusing on

the performance of a single pair of programmers with respect to the performance
of a solo programmer, under the assumption that both the pair and the solo
programmer are undertaking the same programming task. Whether the solo or
pair programmers work in isolation or are part of a larger project team is thus
immaterial.

www.manaraa.com

SUBMITTED DRAFT

The assessment makes a number of other simplifying assumptions. Some of
these assumptions abstract away from extraneous factors over which the
programmers or developers normally have no control, while others reduce the
number or limit the behavior of the underlying variables in order to make a
quantitative comparison possible:

• Cost accumulation. Labor cost is the only kind of cost considered.

All costs are recognized instantly as they are accrued. One-time
overhead costs, such as the pair jelling time [35], are
disregarded. Since we compare a single programming pair to a
single programmer working alone, the pattern of expenditures
for labor costs is linear in each case: costs are accrued
continuously and at a constant rate.

• Measures of time and effort. All variables that measure time and
effort use compressed time. Compressed time excludes idle time,
interruptions, and time spent on non-development or extra-task
activities.

• Defect recovery process. The post-deployment defect discovery
process is assumed to be perfectly efficient. This implies that
after a piece of code has been deployed, all defects are found
instantly. We assume that post-deployment defects are found by
the clients of the deployed code, be them end users or a quality
assurance team. Hence the defect discovery time is not included
in the development effort. (This is also implied by the
compressed-time assumption: from the programmers’
perspective, the time it takes for post-deployment defects to be
discovered is idle time, and as such, it is disregarded in the
analysis.) Defects are fixed at a fixed rate, which depends on the
development process.

• Value realization. A linear relationship is assumed between the
amount of code deployed by the programmers and the value
generated through the development activity. Deployed code
instantly realizes value when it is defect-free. Code may be
deployed in arbitrarily small increments.

• Ranges and baseline values of model parameters. Whenever
necessary and reasonable, statistics previously reported in the
literature are used to determine the ranges and baseline values of
model parameters.

www.manaraa.com

SUBMITTED DRAFT

ABSTRACTION OF THE DEVELOPMENT PROCESS

The two development processes that underlie the comparison are the Personal
Software Process (PSP), which is designed for individual programmers, and the
Collaborative Software Process (CSP), which is designed for pair programmers.
The CSP practices are intentionally based on PSP practices, with the exception
of pair programming. As a result, we consider that our comparison of PSP and
CSP is essentially a comparison between solo and pair programming. The shared
practices of the two processes, therefore, are not discussed here.
 In what follows, we refer to a single developer or a team of developers
simultaneously working on a piece of code as a work unit. We represent the
development process in terms of two descriptive and three empirical parameters.
The size of the work unit uniquely differentiates the CSP from the PSP.

DESCRIPTIVE PARAMETERS:
The two descriptive parameters of the development process are:

• N: size of the work unit (persons). The number of developers in a work unit.
N equals 1 for a solo programmer (hereby, a soloist), and 2 for a pair of
programmers (hereby, a pair). Thus N = 1 if the work unit consists of a
soloist following the PSP. N = 2 if the work unit consists of a pair of
developers working in tandem on the same task following the CSP.

• υ: value realization model. The pattern in which a work unit delivers a
finished or partial product, and accordingly generates value. This parameter
will be discussed later in the paper.

The work unit (N) and the value realization model (υ) are the only
independent parameters in the process model. When we vary N, we always keep
the value of υ constant. The values of the empirical parameters all depend on N.

EMPIRICAL PARAMETERS:

Before we introduce the empirical parameters, we need to define how we
measure the output (denoted by ω) of a work unit. A work unit, depending on
how efficient it is, is able to produce only a certain amount of output within a
given time. Conversely, a work unit, again depending on its efficiency, requires
a certain amount of time to produce a given amount of output. In the latter case,

www.manaraa.com

SUBMITTED DRAFT

the output targeted by the work unit can be thought of as the size of the project
or task undertaken.
 In software development, output is an elusive concept to represent and
measure. It’s by and large a subjective notion whose interpretation it the cause
of much controversy. To be meaningful, the measure of output should correlate
with how much technical functionality is provided by the software artifact
produced. Yet there is no universally accepted way of counting technical
functionality. We use the most widely adopted and easy to compute measure,
lines of code (LOC). However, LOC is just a proxy. Some argue that it is not an
appropriate measure of output in that LOC may not always correlate well with
the amount of functionality delivered. More abstract measures, such as function
points, have been suggested as alternatives, but these are not suitable for use in
our analysis because of their coarse and non-uniform granularity.
 The unit of two empirical parameters, productivity and defect rate, depend
on the adopted unit of ω. If LOC is substituted by another output measure, the
units of productivity and defect rate will change accordingly.
 Having defined output, the three empirical parameters of the development
process are:

• π: productivity (LOC/hour). The average hourly output of the work unit.

• β: defect rate (defects/LOC). The average number of defects per unit of
output (per LOC) associated with the work unit.

• ρ: rework speed (defects/hour). The speed at which the work unit fixes
defects in a piece of previously deployed code, after the defects have been
discovered.

The values of these three parameters are determined empirically based on
past research studies and statistics reported in the literature. The chosen values
are primarily for illustration purposes, and represent information available at the
time of writing. The actual values could be different, and they would most likely
be both project- and skill-dependent. The specific results reported here are
sensitive to the empirical parameters to varying extents, however we believe that
the general conclusions are much less so under the assumptions of the analysis.
A sensitivity analysis is performed at the end of the paper.

PRODUCTIVITY :
According to a study by Hayes and Over [19], the average productivity rate of
196 developers who took PSP training was 25 LOC/hour. This figure will be the
chosen value of π for N = 1 (soloist). Note that the developers in the PSP
training course were essentially free from normal business interruptions. As a

www.manaraa.com

SUBMITTED DRAFT

result, this figure may seem high when compared with productivity figures
based on monthly rates in which programmers’ total output is compared with
their total time (including meetings, absences, vacation, etc.). However, the
Hayes and Over productivity figure is appropriate for our analysis as we use
compressed time in all measures. We use the term compressed time to refer to
pure programming time (including rework time that is associated with fixing
defects). Compressed time excludes interruptions, vacation, and idle time.

The University of Utah study [34, 35] reported that a pair spends on average
only 15% more effort (in total person-hours) than a soloist to complete the same
programming task. This result however was not statistically significant, with
approximately a 40% probability of the observed difference in the mean being
due to chance. Although further analysis was not performed on the data set to
verify whether the two-tailed t-test employed was powerful enough to detect the
difference at the specified alpha level in the first place, anecdotal evidence [1, 32,
33] is supportive of no significant total effort penalty for pair programmers after
pair jelling has occurred [2, 34, 36]. Pair jelling is the time period in which
programmers learn to work effectively in a pair, to give and to accept objective
suggestions, and to communicate during development. In our firsthand
observations, there is a one-time jelling cost of between 1to 40 hours the first
time a programmer pairs. Subsequently, there is another short 30-60 minute
jelling period when a programmer pairs with a different programmer for the first
time; during this time the programmers learn each other’s strengths and
weaknesses relative to their own.

We err on the conservative side by assuming that the observed 15%
difference is real. With this assumption, in a single person-hour, each
programmer of a pair produces an average of 25/(1.15) = 21.74 LOC, and
together they produce twice this volume, or 43.48 LOC. Thus, benchmarked
relative to the baseline PSP productivity level of 25 LOC/hour, the value of π
for N =2 (pair) is taken to be a conservative 43.48 LOC/hour.

These pair productivity rates are within 20-30% of those recently reported
by a technology company in India that used both pair and solo programming in a
Voice-over-IP project. This project reported a pair-to-soloist productivity ratio
of 2.8 (3.3 KLOC/month for solo programmers versus 9.6 KLOC/month for pair
programmers based on a 60-hour work week) [33]. Note that this ratio is much
higher compared to the more conservative ratio of 1.74 adopted here.

DEFECT RATE :
According to Jones [22], code produced in the US has an average of 39 raw
defects per thousand LOC (KLOC). This statistic is based on data collected from
such companies as AT&T, Hewlett Packard, IBM, Microsoft, Motorola, and

www.manaraa.com

SUBMITTED DRAFT

Raytheon, with formal defect tracking and measurement capabilities. According
to the same reference, on average, 85% of all raw defects are removed via the
development process, and 15% escape to the client.

Together the two pieces of statistics suggest an average post-deployment
defect rate of (0.039)(0.85) = 0.00585 defects/LOC. The number is consistent,
though on the low side, with data from the Pentagon and the Software
Engineering Institute, which indicate that typical software applications contain
5-15 defects per KLOC [18]. We adopt the average 0.00585 defects/LOC as the
baseline soloist value of β, for N = 1.

During the empirical study of pair programming vs. solo programming,
Williams [9, 10, 34, 35] observed that at the end of the project, code written by
pairs on average passed 90% of the specified acceptance tests compared to code
written by soloists, which passed on average only 75% of the same test suite.
The results were statistically significant at an alpha level of less than .01.
Assuming that the test suite provided full coverage, this result suggests a pair-to-
soloist post-deployment defect rate ratio of .6 (corresponding to an improvement
rate of 1 – .6 = 40%). Thus benchmarked relative to the soloist (N = 1) baseline
value of 0.00585 defects/LOC, the adopted value of β for a pair (N = 2) is
(0.00585)(0.6) = 0.003510 defects/LOC.

The adopted soloist value of β is close to the average defect rate of 0.00534
defects/LOC reported by the Indian company mentioned previously [33].
However, for pairs, the company reported defect rates that are an order of
magnitude lower than the adopted β value of 0.003510 defects/LOC, both
during unit testing (at 0.0002 defects/LOC) and during acceptance testing (at
0.0004 defects/LOC), corresponding to an improvement of over 90% over
soloists. In the initial analysis, we will err on the conservative side again by
adopting the figures yielded by the University of Utah study. Later in the paper,
sensitivity analysis will show how an improvement as dramatic as the one
reported by the Indian company affects the results.

REWORK SPEED :
A study of a set of industrial software projects from a large telecommunications
company [29] reported that each discovered (post-deployment) defect required
an average of 4.5 person-days, or 33 person-hours of subsequent maintenance
effort or rework (based on a 7.5-hour workday). This statistic is consistent with
data reported by Humphrey [21]. Based on this observation, the value of rework
speed ρ for a soloist (N =1) is taken to be 1/33 = 0.0303 defects/hour. Again this
servers as our baseline value for computing the pair defect rate.

www.manaraa.com

SUBMITTED DRAFT

No data is available regarding the effect of pair development on rework
activities. We will assume pairs can achieve rework productivity gains
comparable to those reported for the initial development activities. Under this
assumption, the estimated rework speed ρ for a pair (N = 2) will be
(2)(0.0303)/1.15 = 0.0527 defects/hour. This assumption would especially be
valid for agile development processes such as Extreme Programming, where no
clear separation exists between rework and development activities.

INITIAL ABSTRACT MODELS:
For now we leave υ, the value realization model, unspecified since it will not be
needed for the initial comparison. Thus the initial abstract models that represent
the two development processes are:

Solo = {N = 1, π = 25.0, β = 0.00585, ρ = 0.0303},

Pair = {N = 2, π = 43.478, β = 0.003510, ρ = 0.0527}.

Note that pair jelling costs [2, 34, 36] have been excluded in this model. At
this point, we have no viable empirical data beyond the anecdotes discussed
above regarding jelling costs. Exclusion of jelling costs injects a bias into the
analysis in favor of pair programming. If jelling cost is a one-time cost, this bias
should not be significant. However if it is recurring due to pair rotation or
turnover, it should be factored into the productivity parameter to eliminate the
bias. Fortunately, productivity is the least sensitive of the three empirical
parameters, as discussed below. This helps reduce the bias in the analysis.

THE BASIC COMPARISON MODEL

The basic comparison model consists of three metrics: efficiency, unit effort,
and unit time.

EFFICIENCY:
Efficiency, ε, is defined as the percentage effort spent on developing new code,
exclusive of the effort expended on rework. Given a productivity rate of π, the
effort required to produce ω lines of code of output is given by:

 := Epre
ω N

π

This quantity specifies the initial development (or pre-deployment) effort.
Initial development is followed by rework (or post-deployment) effort once the

www.manaraa.com

SUBMITTED DRAFT

code has been deployed (fielded, or delivered to the client). Rework effort, Epost,
refers to the maintenance effort expended to fix runaway defects after a piece of
new code has been deployed and all such defects have been found.

 := Epost
ω β N

ρ

Here ωβ is the total number of defects and ρ is the speed of rework. Effort
is always adjusted to the work unit by multiplying it by the work unit’s size N.

Total effort, Etot, is the sum of the initial development and rework efforts:

 := Etot
ω N () + ρ β π

π ρ

Efficiency, ε, is then the ratio of the initial development effort Epre to the
total effort Etot. It is thus given by:

 = ε
ρ

 + ρ β π

The percentage effort spent on rework then equals 1 – ε, or:

β π
 + ρ β π

It may seem counterintuitive at first that efficiency and productivity are
inversely related. Why should increasing productivity reduce efficiency? It is
because under a constant defect rate, the number of post-deployment defects
increases with output. Therefore, all other parameters remaining same, an
increase in productivity results in a higher number of total post-deployment
defects, increasing the rework effort, and ultimately decreasing the percentage
effort spent on initial development.

Some development techniques allegedly increase productivity while
reducing the defect rate at the same time. For example, agile development
processes claim to achieve this [3]. If such is the case, simultaneously, a
reduction in βπ and an increase in ρ result, and consequently efficiency
increases.

UNIT EFFORT :

www.manaraa.com

SUBMITTED DRAFT

Unit effort, UE, is the total effort, in compressed person-hours, required to
produce one unit (LOC) of defect-free output. Compressed time refers to time
excluding interruptions, delays, other overhead, and idle time.
 It is calculated by dividing total effort Etot by total output ω corresponding to
that output. Expressed in terms of productivity and efficiency, unit effort is
given by:

 := UE
N

π ε

UNIT TIME:
Unit time, UT, is the compressed elapsed time, in hours, required to produce one
unit (LOC) of defect-free output. Elapsed time is measured as the delta between
the times of occurrence of two events.

Unit time is calculated by dividing unit effort UE by the size of the work
unit N. Expressed in terms of productivity and efficiency, unit time equals:

 := UT
1

π ε

RESULTS OF BASIC COMPARISON MODEL:
Table 1 compares the two abstract models Solo and Pair with respect to the
metrics efficiency, unit effort, and unit time. In each row, the cell in bold
typeface indicates the more favorable alternative with respect to the
corresponding metric. The model Pair fairs considerably better in all of the three
metrics, amounting to nearly 100% improvement in efficiency, over 40%
reduction in unit effort, and over 70% reduction in unit time.

Table 1. Comparison of the models Solo and Pair using the base comparison model
metrics of efficiency, unit effort, and unit time.

 Solo Pair

Efficiency (ε)
(decimal %)

.172 .340

Unit Effort (UE)
(person-hours/LOC)

.233 .135

Unit Time (UT)
(hours/LOC)

.233 (= UE) .068

www.manaraa.com

SUBMITTED DRAFT

THE ECONOMIC COMPARISON MODEL

A software project incurs costs as it accumulates labor hours and realizes

value as it delivers new technical functionality for the end users. A project is
economically feasible when the total value it creates exceeds the total cost it
incurs. We assume that the net value generated depends on four factors: (1) the
project’s labor cost; (2) the value that the project earns commensurate with the
output it produces; and (3) the way in which this earned value is recognized, or
realized, through a specific pattern of deploying the output produced; and (4) the
discount rate r used to bring the underlying cash flows to the present time. The
economic comparison model takes into account the effect of each of these
factors.

LABOR COST:
Programmer labor is often the most important cost driver in a software
development project. Let Cpre,and Cpost denote the hourly average labor cost of
initial development and rework, respectively, per person per hour, including
salary and benefits. We will assume that initial development and rework are
performed by the same work unit, resulting in the same constant value for both
variables. Thus:

Cpre,= Cpost= C

We account for labor costs as such costs are incurred, in a similar fashion a
business using accrual-based accounting would recognize expenses when they
are transacted. However, to avoid choosing an arbitrary period for transacting
labor costs, we assume instead that these costs are accrued in a continuous
manner as a serious of infinitesimally small transactions.

DISCOUNT RATE:
When the costs and benefits of a project are spread over a long period of time,
the economic analysis must take into account, in addition to their magnitude, the
specific times at which these costs and benefits are recognized in terms of
concrete cash flows. To maximize net economic value, a software project should
realize benefits as early as possible and incur costs as late as possible.
 We assume that the resulting cash flows are discounted at a fixed
continuously compounded rate r from the time of their occurrence relative to the
project’s start time. The various interpretations of the discount rate – in terms of
opportunity cost, time value of money, project risk, minimum required rate of
return, or combinations thereof -- is beyond the scope of this paper. We refer the

www.manaraa.com

SUBMITTED DRAFT

reader unfamiliar to the standard capital budgeting literature; for example, see
Ross [2].

EARNED VALUE:
Earned value (EV) is a well known quantitative project tracking method [7, 8,
20, 21]. With EV tracking, a project’s expected outputs or resources are
estimated and scheduled for delivery or consumption, respectively. As the
project progresses, it earns value relative to this delivery/consumption schedule,
so that at completion, the project’s earned value equals the total estimated output
or the total estimated consumption. For example, for a project with a target to
produce 100 units of a product, after having produced 20 units, the project has a
current EV of 20. With a target of 200 units, after having produced the same
amount of units, it has an EV of 10. In both cases, every unit produced
increases the accumulated EV by a fixed amount: by one unit in the former case,
and by half a unit in the latter. Let this constant incremental value be denoted by
V. Then earned value corresponding to a total output of ω is given by:

:= EV V ω

We refer to V, the value earned by one unit of output, as the unit value. In
our case, V corresponds to the average currency value of a single line of code,
expressed in $/LOC.
 According to this model, not every labor hour expended earns value. Effort,
such as rework, that does not increase output or result in new technical
functionality does not earn any value. Therefore earned value considers rework
effort as wasted effort. Consequently, only projects that are 100% efficient earn
extra value for each labor hour expended.

VALUE REALIZATION:

In software projects, earned value is not necessarily the same as realized
value. The distinction between the two is important. Earned value can be seen
more as an expression of potential value commensurate with effort spent given
the productivity level of the development team. That value however may never
be realized, for example if the project fails to deliver a useable artifact. Potential
value is realized when an artifact leaves production and is delivered to its client.
This can be accomplished in small increments or in large chunks over the course
of a software development project. The rate at which realized value accumulates
depends on the frequency with which working code fragments are deployed to
the client. Hence although value can be earned on a continuous basis, it may
not be realized until much later.

www.manaraa.com

SUBMITTED DRAFT

The concept of realized value may also be explained in reference to the two
alternative methods of income recognition of the Generally Accepted
Accounting Principles [37]. In cash-based accounting, income from services
rendered is recognized when services are paid for, while in accrual-based
accounting, income from services are recognized when services are delivered.
Thus the concept of realized value admits an accrual-based view of value
recognition rather than a cash-based view.
 New code is developed, deployed, and reworked in increments of different
size, and as such, realized value is accumulated at the same pace as obligations
regarding the different size increments are fulfilled. In the economic analysis,
we consider two alternative value realization models: single-point delivery
(value realized at the end) and incremental delivery (value realized
incrementally on a continuous basis). These two models are located at the
opposite extremes of the value realization spectrum. The contrast helps
demonstrate the impact of the underlying pattern of value realization on the
economic feasibility of a process. Most real projects fall somewhere in between
these two theoretical extremes. In contract-based development, the terms of the
contract dictate the actual value realization pattern. New contracting models are
being put forward with different compensation structures; for example, see Beck
and Cleal [5]. The model we use in our analysis can easily be adapted to a
particular compensation model.

The Single-Point Delivery Model

With traditional, waterfall-like [28] models of software development, code
delivery to the client often occurs in one large chunk. The scope of the project is
fixed and finite. Hence, value is realized in a single step at the very end. We will
refer to this value realization model as single-point delivery, or deferred
realization. The single-point delivery model is illustrated in Figure 1. The
horizontal dimension denotes compressed elapsed time with respect to a single
project. Time τ marks the end of the project (completion). It also coincides with
the time of the realization of value accumulated over the course of the project.
Note that during rework, from τpre to τ, the project does not earn any extra value.

 Development
τpre τ

Start Deploy Complete

Rework

Figure 1: Single-point delivery model of value realization.

www.manaraa.com

SUBMITTED DRAFT

Incremental Delivery Model
At the opposite end of the spectrum is the incremental delivery model. The
scope of the project may not be predetermined, and the responsibility of the
work unit may extend to perpetuity. New code is continuously developed,
deployed, and reworked in small increments. Development of new code and
rework of deployed code are intertwined in a never-ending cycle. Consequently,
value is realized in very small increments as micro-obligations involving small
chunks of new code are gradually fulfilled.
 The generic incremental delivery model is illustrated in Figure 2. Again, the
horizontal dimension represents compressed elapsed time. The ticks correspond
to deployment points at which the work unit delivers new functional code. In the
idealized version of the incremental delivery model, the distance between two
subsequent deployment points approaches to zero, resulting to a truly continuous
process. We will consider this idealized version only, which we refer to as the
continuous delivery model.

Start

Rework …
Deploy DeployDeploy DeployDeploy

Rework ReworkReworkRework

Figure 2: Incremental delivery model of value realization.

EFFICIENCY OF DEFECT DISCOVERY:
A factor that affects value realization is the efficiency of defect discovery. We
define a defect as a fault that was not discovered or removed before deployment,
but subsequently is discovered by the client. Alternatively, in an environment
where the client is integrated in the development team, defects may be
discovered in collaboration with the work unit during the acceptance testing of
new code. Defect discovery efficiency involves two components: latency and
coverage.

Latency is the elapsed time between the deployment of a software artifact
and the discovery of a fault by the client. Coverage is the number of defects
reported or discovered in relation to the total number of defects (including those
that have not been discovered).

In practice, the discovery of defects by the client can neither be
instantaneous nor complete. For example, Jones [22] states that in large
industrial projects, more than half of the runaway defects (post acceptance
testing) have a latency of one year, while total coverage four years after
deployment hovers around 97%. Thus empirical evidence suggests an

www.manaraa.com

SUBMITTED DRAFT

exponential latency model with a half-life of roughly one year with traditional
development. In contrast, agile software development processes [4, 17], such as
Extreme Programming and SCRUM [26], that rely on short cycles, continuous
testing, and frequent client feedback will tend to have a low latency and high
coverage.

The economic analysis assumes a perfectly efficient defect discovery
process: one with full coverage and zero latency. These idealized conditions are
opposing in terms of their impact on net value: while increased coverage tends
to decrease net value, increasing latency tends to increase it. When the discount
rate is taken into account, these assumptions lead to a conservative overall bias,
with a mild tendency to underestimate net value. However the level of
underestimation may be different for different processes.

ECONOMIC COMPARISON MODEL

NET PRESENT VALUE:
The Net Present Value of a software project can be written as the difference

between the present value (PV) of the project’s benefits and the present value of
its costs. This definition is adapted to the current context by representing the
benefits in terms of earned value and the costs in terms of labor costs. With this
adaptation, NPV becomes very sensitive to changes in the unit value V.

Figure 3 shows how NPV varies as V varies in the neighborhood of 5% to
30% of the unit labor cost C for a pair under single-point delivery. NPV is
represented by the vertical axis. The NPV = 0 plane splits the V-Output space
into feasible (NPV > 0) and infeasible (NPV < 0) regions. The range of V is
chosen to emphasize the behavior of NPV in the neighborhood of this feasibility
plane. Note that the slope of the NPV curve changes drastically along the
Output axis as V varies. Because of this sensitivity, our interest is not in NPV
per se. We need a derived metric whose value can be used to rank two
alternatives independent of a particular choice of unit value. Breakeven Unit
Value meets this need.

www.manaraa.com

SUBMITTED DRAFT

Figure 3: NPV as a function of unit value V and output ω for a fixed discount rate r
= 0.1. Output is plotted in KLOCs. The labor cost C is set to 50. V varies from 5%
to 30% of the labor cost C.

BREAKEVEN UNIT VALUE – A RELATIVE RETURN-ON-INVESTMENT METRIC:
Breakeven Unit Value is the threshold value of V above which the NPV is
positive:

BUV = min{ V | NPV ≥ 0 }

BUV is determined by setting solving the equation NPV = 0 for V. Recall
that V is measured in $/LOC, and represents the fixed increase in earned value
per each additional unit of output produced.

A small BUV is better than a large BUV. As BUV increases, a project
becomes less and less worthwhile because higher and higher margins are
required to move NPV into the feasible region. Thus, we can think of BUV as a
relative measure of return on investment.

BREAKEVEN UNIT VALUE RATIO (BUVR):
Using BUV ratios, we can make a one-step comparison between two processes
to gauge their relative feasibility. Define BUV Ratio (BUVR) as the ratio of the
BUV of model Soloυ to the BUV of Pairυ, where υ denotes one of the two value
realization models.

 = BUVR
BUV solo

BUV pair

www.manaraa.com

SUBMITTED DRAFT

Values of BUVR greater than unity indicate an advantage for pairs; values
smaller than unity indicate an advantage for soloists. As this ratio increases, the
advantage of the pair over the soloist also increases.

The metric BUVR makes the comparison between the two paradigms not
only independent of V, but also of the hourly labor cost C. BUVR depends on:

• the internal parameters of the models Solo and Pair,

• the value realization model υ , and

• the discount rate and the output (applicable only under the single-point
delivery model).

SUMMARY OF RESULTS:
Table 2 summarizes the results of the economic comparison. The process
models Soloυ and Pairυ are compared under two value realization models with
respect to the BUVR metric. The two value realization models considered are
the single-point delivery model (υ = 1) and the idealized version of the
incremental delivery model (or the continuous delivery model, υ =∞).

In the table, r denotes the discount rate. Projects of higher risk usually
require the use a proportionately higher discount rate. Note that we apply the
same discount rate for both negative cash flows (costs) and positive cash flows
(benefits). In practice, costs and benefits may be subject to different levels and
types of risk, possibly warranting the use of different discount rates. A detailed
discussion of the relationship between risk, return, and discount rate is beyond
the scope of this paper, but can be found in any introductory corporate finance
text [27].

Comparison 1 (single-point delivery) depend both on the discount rate and
the amount of output produced by the development unit. In general, as the
discount rate and output increase, BUVR, hence the advantage of pairs over
soloists, increases (with a slightly positive second partial derivative). In
comparison 2 (continuous delivery model), the BUVR is constant and greater
than unity, representing a steady advantage for pairs.

The limit behaviors are described by the rows “As ω or r approaches to
infinity” (development continues to perpetuity or discount rate is very high) and
“As δ approaches to 0”. The subsequent row is the range of BUVR for each
comparison when both the discount rate and output range from zero to infinity.
The final row specifies which model fares better in each case.

Overall, a pair operating under the continuous delivery model (the model
Pair∞) yields the lowest (best) BUV since this model combines the improved
efficiency and productivity of the pair with the advantage of incremental value

www.manaraa.com

SUBMITTED DRAFT

realization. These results highlight the impact of the realization model on the
economic analysis.

The findings are sensitive to the three empirical parameters π (productivity),
β (defect rate), and ρ (rework speed) to varying degrees. The next to last row of
Table 2 summarizes the results of sensitivity analyses. Sensitivity is discussed in
more detail later in the paper.

Table 2. Comparison of the models Solo and Pair under different value realization
models using BUVR

 Models Compared
BUVR Behavior
(BUVR = BUVsolo/BUVpair)

1. Solo1 to Pair1
(Single-Point Delivery)

2. Solo∞ to Pair∞
(Continuous Delivery)

As discount rate (r) increases: BUVR increases at an
increasing rate

BUVR is constant

As output (ω) increases: BUVR increases BUVR is constant
As ω or r approaches to infinity: BUVR approaches to

infinity
BUVR remains
constant at 1.3

As δ approaches to 0 BUVR approaches to its
min. value of 1.5

BUV remains
constant at 1.3

Range of BUVR when the empirical
parameters are fixed:

[1.5, ∞) Constant at 1.3

Sensitivity of BUVR to changes in
empirical parameters:

Defect Rate (β):
Productivity (π):
Rework Speed (ρ):

High
Low

Medium

High
Low

Medium
Overall better model Pair1 Pair∞

BENEFITS AND COSTS IN SINGLE-POINT DELIVERY:
We now explain the elements of the economic analysis for the single-point
delivery model in more detail. When value is realized only at project
completion, NPV can be written as:

:= NPV1 − DRV TDC 1

 Here DRV denotes Deferred Realized Value, IRV denotes Incremental
Realized Value, and TDC denotes Total Discounted Cost. Each of these
parameters is discussed in detail below.

Deferred Realized Value
Deferred Realized Value (DRV) is the accumulated earned value at project
completion expressed in present value terms. DRV is given by:

www.manaraa.com

SUBMITTED DRAFT

 := DRV V ω e
()−r τ

where EV is the earned value, τ is time to completion expressed in compressed
elapsed time, and r is the fixed, continuously compounded discount rate. The
factor e(-rτ) brings the deferred EV to the present time.
 Expressed in terms of unit value V and output ω, DRV equals:

 := DRV V ω e

−
r ω

π ε hy

where π is the process (work unit) productivity (LOC/hour), ε is the process
(work unit) efficiency (unitless), and hy is the total number of labor hours in a
calendar year.

An optimal level of output exists that maximizes the deferred realized
value. This level of output is defined by the root of the partial derivative of DRV
with respect to ω:

 =

∂
∂
ω

DRV 0

Then maximum DRV is given by:

 = DRV max

V π ε hy e
()-1

r

Note that maximum DRV increases with efficiency, but decreases with
discount rate. Since V, hy, and, r are constant, the maximum DRV ratio of a
soloist to a pair is simply given by (πsolo εsolo)/(πpairεpair) = UTpair/UTsolo, yielding
a constant value of 0.39. This implies that the maximum value realizable under
the single-point delivery model by a soloist is less than half the maximum value
realizable by a pair. This limit is independent of unit value and discount rate.

Marginal Cost
Marginal cost is the additional cost accumulated by a work unit per unit time of
work. For the single-point delivery model, marginal cost before and after
deployment will be different if hourly labor cost for initial development and

www.manaraa.com

SUBMITTED DRAFT

rework are different. We will calculate a total discounted cost based on this
general case, and then use the assumption Cpre = Cpost to simplify the result.

For a project with τ years to completion and a process efficiency of ε, the
Marginal Initial Development Cost in dollars per year is given by:

 := mCpre

E ε Cpre

τ
 = hy N ε Cpre

Similarly, the Marginal Rework Cost in dollars per year is:

 := mCpost

E () − 1 ε Cpost

τ
 = −hy N ()− + 1 ε Cpost

Total Discounted Cost can now be calculated from these two components.

Total Discounted Cost
We assume that labor costs are incurred on an ongoing basis as a project
progresses. This is a reasonable assumption since corporations incur payroll
cash flows in regular discrete installments, for example, on a weekly, bi-weekly,
or monthly basis. Labor costs are discounted as they are incurred. For projects
with a sufficiently long time horizon, a continuous model is a reasonable
frequency-independent approximation to the discrete model in which labor costs
are incurred in a periodic manner.

With these assumptions in mind, the Total Discounted Cost for the model
Solo1 is obtained by summing marginal costs accumulated over infinitesimally
small intervals, both before and after deployment:

 := TDC 1 + d⌠

⌡

0

τpre

mCpre e
()−r t

t d⌠

⌡

τpre

τ

mCpost e
()−r t

t

Here mCpre dt and mCpost dt represent initial development and rework costs,
respectively, accumulated over a small interval dt in the neighborhood of
elapsed time t. The factor e

()−rt
brings the small cash flow that occurs over dt to

the present time by discounting it over the period t. Here the variable of
integration, t, is measured in units of compressed elapsed time.

When Cpre = Cpost = C, the sum of the two integrals reduces to:

www.manaraa.com

SUBMITTED DRAFT

hy N C ()− + − + + 2 ε e
()−r τpre

ε e
()−r τ

e
()−r τpre

ε e
()−r τ

r

By substituting

 = τ

ω
π ε hy

 = τpre
ω

π hy

in the above equation based on the relationship between compressed elapsed
time τ and output ω, it is possible to express Total Discounted Cost in terms of
total output ω and efficiency ε.

BUV in Single-Point Delivery
Under the single-point delivery model, BUV depends on both output (ω) and
discount rate (r). It increases as either of these variables increases. Figure 4
shows BUV for the model Pair1 (pair under single-point delivery), for a fixed
labor cost of C = $50/hour. BUV increases with output as well as with discount
rate because of deferred value realization under the single-point delivery model,
where higher and higher profit margins are required as total time to completion
increases.

Figure 4: Breakeven Unit Value for the model Pair1 for a fixed hourly labor cost of

$50. Output is in KLOCS.

When the discount rate is zero, BUV in the single-point delivery model is

given by:

 = lim
 → r 0

BUV 1
() − + 1 2 ε 2 ε2 N C

π ε

www.manaraa.com

SUBMITTED DRAFT

The limit yields a constant minimum BUV both for a pair and for a soloist.

BUVR in Single-Point Delivery
The economic advantage of pairs over soloists is evident in the single-point
delivery model. BUVR is at least 2.24 when the discount rate is zero. In other
words, the BUV for a soloist is at least 124% higher than the BUV for a pair.
The pair’s advantage increases as output or discount rate increases. The effect is
illustrated in Figure 5, which plots Solo1 to Pair1 BUVR as a function of total
output and discount rate. Pairs accumulate costs faster, but more than
compensate for this by realizing value earlier. The larger the project or the
higher the discount rate, the more pronounced is the advantage of pairs over
soloists.

As can be seen in Figure 5, BUVR is not very sensitive to changes in the
discount rate although BUV itself is (Figure 4). Taking the ratio smoothes the
impact of discount rate out to a certain degree. For example, even at high values
of output (for large projects), a six-fold increase in the discount rate increases
the BUVR by less than 19%. Below an output of 5 KLOC (for small projects),
BUVR increases by less than 6%.

Figure 5: BUVR of the model Solo1 to the model Pair1 as a function of output for

different discount rates.

BENEFITS AND COSTS IN CONTINUOUS DELIVERY:
We now explain the elements of the economic analysis model for the continuous
delivery model in more detail. For the continuous delivery model, NPV can be
expressed as:

www.manaraa.com

SUBMITTED DRAFT

:= NPV∞ − IRV TDC ∞

 Here IRV denotes Incremental Realized Value, and TDC again denotes
Total Discounted Cost.

Marginal Value Earned
Marginal Value Earned (MVE) is the average value earned per additional unit
of elapsed time (measured in $/year, elapsed time is in terms of compressed
time). Given a completion or cut-off time of τ, measured in compressed elapsed
time, MVE equals:

 := MVE =
EV
τ

V ω
τ

Representing output ω in terms of elapsed time eliminates the variable τ,
allowing MVE to be expressed as a function of productivity π and efficiency ε:

:= MVE V π ε hy

Incrementally Realized Value
Incrementally Realized Value (IRV) is the total value earned over a given time
period. Since value realized as earned, it is also discounted as earned. If τ is the
time to project completion or the cut-off time, then IRV is given by:

 := IRV d⌠
⌡

0

τ

MVE e
()−r t

t

As usual, the variable of integration, t, is measured in compressed elapsed
time. Expressed in terms of efficiency ε and productivity π, IRV equals:

 := IRV −
V π ε hy () − e

()−r τ
1

r

As the cut-off date approaches infinity, IRV asymptotically approaches its
maximum value. This limit represents the value of operating a single work unit
to perpetuity under constant discount rate. Maximum IRV is given by:

 = IRV max

V π ε hy

r

www.manaraa.com

SUBMITTED DRAFT

 As with Deferred Realized Value, maximum IRV increases with efficiency
and decreases with discount rate.

Pairs achieve a 53% higher maximum IRV than soloists. Since the discount
rate (r), the unit value (V), and the number of labor hours in a calendar year (hy)
are the same for both soloists and pairs, the pair-to-soloist ratio of maximum
IRV is given directly by the pair-to-soloist ratio of efficiency.

Marginal Cost
Marginal cost was defined as the expected incremental cost of development and
rework per additional unit of elapsed time. The same definition remains in effect
here, but its computation is slightly different than the one for the single-point
delivery model. Since in the continuous delivery model, initial development and
rework are intertwined, marginal cost, mC∞, can be written as:

 := mC∞

 + E ε Cpre E () − 1 ε Cpost

τ

where E is the total effort. When Cpost = Cpre = C, marginal cost reduces to:

 = mC∞ hy N C

Total Discounted Cost
As is the case in the single-point delivery model, under the continuous delivery
model, labor costs are accrued and discounted as they are incurred to calculate
the Total Discounted Cost (TDC). If the variable t represents compressed
elapsed time, TDC can be written by the following integral:

 := TDC ∞ d⌠

⌡

0

τ

mC∞ e
()−r t

t

After substituting the marginal cost with the corresponding term, the above
definite integral reduces to:

 := TDC ∞ −
hy N C () − e

()−r τ
1

r

www.manaraa.com

SUBMITTED DRAFT

Maximum Discounted Cost
The Maximum Discounted Cost that a work unit under the continuous delivery
model can earn at a constant discount rate is the asymptotic value of TCD
incurred by the work unit to perpetuity. This limit is given by:

 = TDC ,∞ max

hy N C
r

A pair consistently incurs twice the maximum discounted cost incurred by a
soloist. This is because the ratio of maximum TDC is determined solely by N, as
the labor cost (C) and the discount rate (r) are assumed to be the same for both
models.

BUV in Continuous Delivery
When both value realization and cost accumulation are continuous and
incremental, BUV’s dependence on output and discount rate is broken in the
continuous delivery model. Generically, BUV under the continuous delivery
model is given by:

 := BUV ∞

N C
π ε

This yields, for a fixed labor cost of C = $50/hour, a Breakeven Unit Value
of 11.652 for the model Solo∞ and 8.96 for the model Pair∞.

BUVR in Continuous Delivery
The BUVR under the continuous delivery model is given by:

 = BUVR ∞

Nsolo πpair εpair

Npair πsolo εsolo

The value of BUVR is thus constant at 1.73 under this model of value
realization, representing a steady 42% (1 – 1/1.73) advantage for pairs (model
Pair∞) over soloists (model Solo∞). Note that this advantage is present
regardless of the discount rate and the level of output produced.

SENSITIVITY ANALYSIS

www.manaraa.com

SUBMITTED DRAFT

Figures 5 to 7 already illustrated the sensitivity of the BUVR to the two
exogenous parameters––namely discount rate (r) and output (ω). The results are
summarized in Table 2. In the single-point delivery model, BUVR is mildly
sensitive to both discount rate and output. In the continuous delivery model,
BUVR is invariant so it is not sensitive to either of these parameters.

What about the three endogenous empirical parameters, productivity (π),
rework speed (ρ), and defect rate (β). Since these parameters are descriptive of
the development process and the work unit, they warrant further investigation.
As summarized in Table 2, BUVR is most sensitive to changes in defect rate,
but less so to changes in rework speed, and even less to changes in productivity.

Recall the two pairs of model being compared from Table 2:
• Comparison 1: Solo1 & Pair1

• Comparison 2: Solo∞ & Pair∞

In the following graphics, the number next to each curve denotes the
comparison being made according to the above scheme. We analyze each
empirical parameter in order from least to most sensitive. For the production of
the graphics, we maintained the discount rate and the output at the arbitrary
values of 0.1 (10%) and 7.5 KLOC, respectively. The particular choice of these
exogenous parameters only marginally displaces the curves within reasonable
ranges, and do not affect the sensitivity results with respect to the three
empirical parameters.

We will characterize the sensitivity of BUVR to an empirical parameter
over a given range as insignificant if the partial derivative of BUVR with respect
to the percentage increase in that variable over the range in question is hovering
around zero; mild if the absolute value of the partial derivative is consistently
less than unity, but non-zero; moderate if the absolute value is hovering around
unity; and significant if it is consistently greater than unity. Table 3 summarizes
the sensitivity analysis results.

www.manaraa.com

SUBMITTED DRAFT

Table 3. BUVR Sensitivity of findings to empirical parameters.

 Models Compared
BUVR sensitivity
(range specified as percent improvement)

1. Solo1 & Pair1 2. Solo∞ & Pair∞

Productivity (π) over range 0% to 80% Mild Mild
Productivity (π) over range 80% to 400% Insignificant Mild to Insignificant
Rework speed (ρ) over range 50% to 200% Moderate Mild
Rework speed (ρ) over range 200 to 400% Mild Insignificant
Defect rate (β) over range 5 to 20% Moderate Moderate

Defect rate (β) over range 20 to 85% Significant Significant

Defect rate (β) in neighborhood of 85% Insignificant Significant

SENSITIVITY TO IMPROVEMENT IN PRODUCTIVITY:
Figure 8 illustrates the sensitivity of the results to the level of improvement in
productivity (π) achieved by pairs over soloist. The percentage improvement is
expressed relative to the previously adopted productivity value of 25
KLOC/hour for the model Solo. The dotted vertical line marks the benchmark
level of improvement achieved by the model Pair according to the University of
Utah study.

Overall, BUVR is mildly sensitive to productivity improvements. Both
comparisons are initially mildly sensitive to improvements in productivity. The
sensitivity decreases as the productivity improvement increases. Around the
benchmark level of 74%, the effect is insignificant in comparison 1 and mildly
significant in comparison 2.

1

2

Figure 8: Sensitivity of BUVR to improvements in productivity.

www.manaraa.com

SUBMITTED DRAFT

SENSITIVITY TO IMPROVEMENT IN REWORK SPEED:
Figure 9 illustrates the sensitivity of the results to the level of improvement in
rework speed (ρ) achieved by pairs over soloist. The percentage improvement is
expressed relative to the previously adopted rework speed value of 0.0303
defects/hour for the model Solo. The dotted vertical line again marks the
benchmark level of improvement corresponding to the model Pair according to
the University of Utah study.

Overall, BUVR is mild to moderately sensitive to rework speed. Both
comparisons exhibit a diminishing sensitivity to improvements in rework speed.
For comparison 1, a marginal increase in the rework speed of pairs over soloists
provide a matching benefit up to an improvement level of around 200%, which
we characterize as moderate sensitivity. At the benchmark level of 74%, the
effect is moderately sensitive in comparison 1 and mildly sensitive in
comparison 2.

1

2

Figure 9: Sensitivity of BUVR to improvements in rework speed.

SENSITIVITY TO IMPROVEMENT IN DEFECT RATE:
Figure 10 illustrates the sensitivity of the results to the level of improvement in
defect rate (β) achieved by pairs over soloist. The percentage improvement is
expressed relative to the adopted rework speed value of 0.00585 defects/LOC
for the model Solo. Unlike in rework speed and productivity, an improvement in
defect rate corresponds to smaller, not larger, values of β. A maximum
improvement of 100% corresponds to a defect rate of zero. As before, the
dotted vertical line marks the benchmark level of improvement corresponding to
the original model Pair.

www.manaraa.com

SUBMITTED DRAFT

Overall, BUVR is initially moderately sensitive to changes in defect rate,
and then becomes increasingly significantly sensitive to it. Around the
benchmark level of 60%, the effect is significant. A deviation from this behavior
occurs around the 85% improvement neighborhood in comparison 1. There the
BUVR peaks and then starts to decline. The peaking effect is attributed to the
increasing double labor cost of pairs finally overtaking the diminishing savings
from reduced rework effort due to low defect rates. The peaking effect is absent
in comparison 2 because of the effect of incremental value realization.

1

2

Figure 10: Sensitivity of BUVR to improvements in defect rate.

CONCLUSION AND FUTURE WORK

Quantitative analyses demonstrate the potential of pair programming as an
economically viable alternative to individual programming. We compared the
two practices under two different value realization models. In each case, we
found that pair programming generally creates superior economic value based
on data from a previous empirical study and other statistics reported in the
general software engineering literature. Although the techniques and concepts
employed in the analysis are standard, their use in this particular type of
assessment, especially the incorporation of value realization considerations, is
novel.

In both practices, net value is maximized when the project realizes value
incrementally, for example, through frequent releases. This observation is fully
consistent with the general engineering economics intuition that emphasizes
early and speedy value realization [7]. The more interesting question that was

www.manaraa.com

SUBMITTED DRAFT

addressed by the analysis is how fast a project can afford to spend before the
rate of spending overtakes the benefits of early value realization.

Although the findings are not very sensitive to the two exogenous
parameters, output and discount rate, they are particularly sensitive to an
endogenous parameter, the defect rate. Discount rate was a determining factor
between the two practices only in one comparison.

The sensitivity to defect rate is not particularly surprising, since the case for
pair programming largely hinges on a significant improvement in defect rate.
Our observation confirms that further studies of pair programming should focus
on defect rate.

The analyses performed relied on several assumptions. The main ones were
the exclusion of pair jelling and other relevant overhead costs, the process
efficiency bias due to the particular definition of time to completion, and the
zero-latency and full-coverage assumptions regarding defect discovery. These
assumptions can be relaxed at the expense of additional model complexity.

The zero-latency defect discovery is not a problematic assumption because
post-deployment defects are found by the clients of the deployed code, and not
by the developers (the work unit). As a result, defect discovery time is not
included in the development effort neither for solo programmers nor for pair
programmers. Therefore, even if finding defects becomes more difficult in the
field as the number of remaining defects decreases, no bias is introduced by the
difference in the post-deployment defect rate between the two practices.

Other considerations include following:
• The disconnect between realized value and business value. We used earned

value (expressed in terms of output and unit value) rather than business
value, as a proxy for benefits. The inclusion of business value would be
meaningful only in concrete contexts because business value strongly
depends on project- and market-related factors. Business value can be
tackled by redefining realized value independently of earned value, in terms
of a separate exogenous parameter. An earlier version of the economic
model adopted this view, however, we didn’t find it suitable for a generic
analysis.

• Treatment of more realistic value realization models that fall between the
two extremes discussed. Intermediary models can be tackled by breaking up
development along an orthogonal dimension with two components: initial
release and subsequent releases. Frequency of subsequent releases can be
used as a sensitivity parameter to determine an optimal release cycle. Again,
this kind of treatment is most useful if different alternatives are evaluated in
a specific, concrete context, rather than for a general comparison.

www.manaraa.com

SUBMITTED DRAFT

• More sophisticated characterizations of the empirical models. Sensitivity
analyses provide much insight when the empirical models are sufficiently
well described by the mean values of the parameters involved. When these
parameters are subject to high-levels of variability from one organization or
project to another, or even within a single project, and exhibit mutual
dependencies, their joint distributional properties become important. If
empirical data can be used to infer these properties, probabilistic analyses
can be performed at the lowest level. Sensitivity analyses can then be
performed at the next level to gauge the impact of errors in the descriptive
parameters of the hypothesized distributions.

• Second-order interactions among individual practices. It is possible for the
substitution of one practice for another (in this case, pair programming for
solo programming) to have unintended, but systematic effects in the rest of
the practices shared by the two processes (CSP and PSP). Such second-
order interactions could amplify or dampen the observations. Although the
University of Utah study did not report effects of this kind, it is still possible
that they existed, but were not detected by the study. Second-order
interactions are typically complex, subtle, and difficult to detect. For
example, pair programmer may be more effective when practiced in
conjunction with test-driven development. Future experiments can be
designed specifically to reveal these hidden effects.

The potential of pair programming as a viable alternative to traditional solo
programming cannot be dismissed on economic grounds. However, in
interpreting our findings, the reader should focus on the general behavioral
properties of the comparison metrics defined, and not on their specific values. It
should be kept in mind that the models used made several assumptions to keep
the complexity at a minimum while allowing for meaningful analysis. In
addition, the analyses performed relied on existing data of mixed origin, with no
independent verification of consistency among the different sources. We remain
cautious of portability of these figures since we have no information on the
software development methods of the companies involved in those statistics. It
would be beneficial to revise the models and repeat the analyses following
further experimentation and assessment of pair programming with professional
software engineers.

REFERENCES
1. AUER, K. AND MILLER, R., XP Applied. Reading, Massachusetts: Addison Wesley,

2001.

www.manaraa.com

SUBMITTED DRAFT

2. BASILI, V. R., SHULL, F., AND LANUBILE, F., "Building Knowledge Through Families
of Experiments," IEEE Transactions on Software Engineering, vol. 25, pp. 456
- 473, 1999.

3. BECK, K., Extreme Programming Explained: Embrace Change. Reading,
Massachusetts: Addison-Wesley, 2000.

4. BECK, K., BEEDLE, M., BENNEKUM, A. V., COCKBURN, A., CUNNINGHAM, W.,
FOWLER, M., GRENNING, J., HIGHSMITH, J., HUNT, A., JEFFRIES, R., KERN, J.,
MARICK, B., MARTIN, R. C., MELLOR, S., SCHWABER, K., SUTHERLAND, J., AND

THOMAS, D., "The Agile Manifesto," pp. http://www.agileAlliance.org, 2001.
5. BECK, K. AND CLEAL, D., "Optional Scope Contracts,"

http://www.xprogramming.com/ftp/Optional+scope+contracts.pdf, 1999.
6. BECK, K. AND FOWLER, M., Planning Extreme Programming. Reading,

Massachusetts: Addison Wesley, 2001.
7. BOEHM, B. W., Software Engineering Economics. Englewood Cliffs, NJ: Prentice-

Hall, Inc., 1981.
8. CHRISTENSEN, D. S., "The Costs and Benefits of the Earned Value Management

Process," Acquisition Review Quarterly, vol. Fall, pp. 373-386, 1998.
9. COCKBURN, A. AND WILLIAMS, L., "The Costs and Benefits of Pair Programming,"

presented at eXtreme Programming and Flexible Processes in Software
Engineering – XP2000, Cagliari, Sardinia, Italy, 2000.

10. COCKBURN, A. AND WILLIAMS, L., "The Costs and Benefits of Pair Programming," in
Extreme Programming Examined, G. Succi and M. Marchesi, Eds. Boston,
MA: Addison Wesley, 2001, pp. 223-248.

11. CONSTANTINE, L. L., Constantine on Peopleware. Englewood Cliffs, NJ: Yourdon
Press, 1995.

12. COPLIEN, J. O., "A Development Process Generative Pattern Language," in Pattern
Languages of Program Design, James O. Coplien and Douglas C. Schmidt, Ed.
Reading, MA: Addison-Wesley, 1995, pp. 183-237.

13. DUTOIT, A. H., BRUEGGE, BERND, "Communication Metrics for Software
Development," IEEE Transactions on Software Engineering, pp. 615-628,
1998.

14. ERDOGMUS, H., "Comparative evaluation of software development strategies based
on Net Present Value," presented at International Conference on Software
Engineering Workshop on Economics-Driven Software Engineering,
California, 1999.

15. ERDOGMUS, H. AND VANDERGRAAF, J., "Quantitative Approaches for Assessing the
Value of COTS-centric Development," presented at Sixth International
Symposium on Software Metrics, Boca Raton, FL, 1999.

16. FAVARO, J. M., FAVARO, K. R., AND FAVARO, P. F., "Value-Based Software Reuse
Investment," Annals of Software Engineering, vol. 5, pp. 5-52, 1998.

17. FOWLER, M., "Put Your Process on a Diet," in Software Development, vol. 8, 2000,
pp. 32-36.

18. GROSS, N., STEPANEK, M., PORT, O., AND CAREY, J., "Software Hell," in Business
Week, 1999, pp. 104-118.

www.manaraa.com

SUBMITTED DRAFT

19. HAYES, W. AND OVER, J. W., "The Personal Software Process: An Empirical Study
of the Impact of PSP on Individual Engineers," Software Engineering Institute,
Pittsburgh, PA CMU/SEI-97-TR-001, December 1997 1997.

20. HUMPHREY, W. S., Managing the Software Process. Reading, Massachusetts:
Addison-Wesley, 1989.

21. HUMPHREY, W. S., A Discipline for Software Engineering. Reading, Massachusetts:
Addison Wesley Longman, Inc, 1995.

22. JONES, C., Software Quality: Analysis and Guidelines for Success. Boston, MA:
International Thomson Computer Press, 1997.

23. LEVY, L. S., Taming the Tiger: Software Engineering and Software Economics.
New York: Springer-Verlag, 1987.

24. NOSEK, J. T., "The Case for Collaborative Programming," in Communications of the
ACM, vol. March 1998, 1998, pp. 105-108.

25. PALMIERI, D., "Knowledge Management through Pair Programming Masters
Thesis," in Computer Science. Raleigh, NC: North Carolina State University,
2002.

26. RISING, L. AND JANOFF, N. S., "The Scrum Software Development Process for Small
Teams," IEEE Software, vol. 17, 2000.

27. ROSS, S. A., Fundamentals of Corporate Finance: Irwin/McGraw-Hill, 1996.
28. ROYCE, W. W., "Managing the development of large software systems: concepts

and techniques," presented at IEEE WESTCON, Los Angeles, CA, 1970.
29. RUSSELL, G. W., "Experience with Inspection in Ultralarge-Scale Developments,"

IEEE Software, vol. January 1991, pp. 25-31, 1991.
30. SUCCI, G. AND MARCHESI, M., Extreme Programming Examined. Boston: Addison

Wesley, 2001.
31. WAKE, W. C., Extreme Programming Explored. Boston: Addison Wesley, 2001.
32. WIKI, "Programming In Pairs," in Portland Pattern Repository, vol. June 29, 1999,

1999, pp. http://c2.com/cgi/wiki?ProgrammingInPairs.
33. WILLIAMS, L. AND KESSLER, R., Pair Programming Illuminated. Reading,

Massachusetts: Addison Wesley, 2003.
34. WILLIAMS, L., KESSLER, R., CUNNINGHAM, W., AND JEFFRIES, R., "Strengthening the

Case for Pair-Programming," in IEEE Software, vol. 17, 2000, pp. 19-25.
35. WILLIAMS, L. A., "The Collaborative Software Process PhD Dissertation," in

Department of Computer Science. Salt Lake City, UT: University of Utah,
2000.

36. WILLIAMS, L. A. AND KESSLER, R. R., "All I Ever Needed to Know About Pair
Programming I Learned in Kindergarten," in Communications of the ACM, vol.
43, 2000.

37. DELANEY, P. R., BARRY, J. E., AND NACH, R. Wiley GAAP 2003: Interpretation and
Application of Generally Accepted Accounting Principles. John Wiley & Sons,
2002.

BIOGRAPHICAL SKETCHES

www.manaraa.com

SUBMITTED DRAFT

HAKAN ERDOGMUS (Hakan.Erdogmus@nrc.ca) is a senior research officer with
the Institute for Information Technology, National Research Council of Canada.
He holds a Master’s degree in Computer Science from McGill University,
Montreal, and a Ph.D. in Telecommunications from Université du Québec. His
current research is in software economics and agile software development,
focusing on the evaluation of underlying processes and practices. He delivered
several lectures on the economics of agile software development. Dr. Erdogmus
is co-editor of Advances in Software Engineering, published by Springer.

LAURIE WILLIAMS (williams@csc.ncsu.edu) is an assistant professor of
Computer Science at North Carolina State University. She received her
undergraduate degree in Industrial Engineering from Lehigh University. She
also received an MBA from Duke University and a Ph.D. in Computer Science
from the University of Utah. Prior to returning to academia to obtain her Ph.D.,
she worked in industry, for IBM, for nine years in engineering and software
development technical and management positions. She was a founder of the
first North American conference on agile software development methodologies,
XP Universe/Agile Universe. She is also the author of Pair Programming
Illuminated and an editor of Extreme Programming Perspectives.

